代写STAT3600 LINEAR STATISTICAL ANALYSIS 2023代写C/C++程序

DEPARTMENT OF STATISTICS ANDACTUARIAL SCIENCE

STAT3600

LINEAR STATISTICALANALYSIS

May 16,2023

1. The data in the following table relate Yand X.

It is given that,

(a)     Find and interpret the least squares estimates of the regression coefficients. [6 marks]

(b)    Construct the ANOVA table and test whether Xhas any effect on Y based on an F test at the 5%level of significance. State the hypotheses,decision rule and conclusion.                                                                                                  [10 marks]

(c)     Calculate and interpret the coefficient of determination.                            [3 marks]

(d)     Calculate the sample covariance matrix of the least squares estimates of the regression coefficients.             [6 marks]

(e)     Estimate the means of Ywhen X=0.05  and -0.05.Find a simultaneous Bonferroni confidence region for the estimation with at least 90%confidence level.    [7 marks]

[Total: 32 marks]

2. A   regression analysis of Y on X₁ and X₂ with normal errors is considered. Fifty observations are obtained. It is given that SST is 0.205. The values  of  SSE for various  independent variables in a model are given as follows.Conduct a forward selection method with the selection level of an F-value being 3.0.Show the steps of the selection procedure.

[Total:10 marks]

3. A  regression analysis of Yon X₁and X₂with normal errors is considered.The  following matrices  are  computed.

The elements of the matrices are properly ordered according to the regression function given  above.

(a)     Find  the least squares estimates of the regression coefficients.                   [3marks]

(b)     Construct   an  ANOVA  table  for  the  regression  analysis.Test  whether  there  is  a regression between the  dependent  and  the  independent  variables  at  the  5%level  of significance.State  the  decision  rule  and  conclusion.    [10   marks]

(c)     Test  the  following  hypothesis  at  the  5%level of significance,

H₀:β₁+β₂=0.

State the decision rule and conclusion.                                                           [5   marks]

(d)     Construct    a   95%prediction    interval    for   y₁+2y₂where    y₁is    a    future   response

where = (0.5, 0.5) and  y₂is  a   future  response  where = (-1,0.5).                     [6marks]

[Total:24  marks]

4.A  study  of  the  effects  of  two  factors,A  and  B,on  an  outcome  Y  was   conducted.Factor  A had  three  levels  and  Factor  B  had  two.All  six  combinations  of  Factors  A  and  B  had  the same  number   of  observations.A   two-way   ANOVA   model   with   interaction   effects   was employed.Part of the ANOVA table is given below.

(a)     Write   down   the   two-way   factor   effects   model   for   the   study.Specify   the   model assumptions.                     [3marks]

(b)     Fill  in  the  blanks  marked  by"?"in  the  ANOVA  table.                                   [6    marks]

(c)     Test  at  the  5%level  of  significance  for  the  interaction  effects  between  the  two  factors. [3marks]

(d)     Test  at  the  5%level  of  significance  for  the  main  effect  of Factor  A.           [3marks]

(e)     The  marginal  means  of Y  for  the  three levels  of Factor A are given in the following. Construct  a   95%confidence  interval   for

e = μ1.    一 μ2.+μ3.,

where μi.is the mean for Y for level i=1,2,3 of Factor A.

[8 marks]

[Total:23 marks]

5.

(a)     Consider  a  linear regression  model

Y=Xβ+E,

where  Xis  of  dimension  n×p,Y  of  dimension  n×1  and  e  is  a  vector  of  n

variables which have means 0 but are not necessarily independent among each

other.Write  down  the  least   square   estimate,β,for  β  in  terms   of  Xand  Y.No

proof is required.                                                                                               [1    mark]

(b)     Xis  partitioned  as

X=[X₁|X₂],

β   as

and the least  squares estimate  β  as

where X₁is  the  jth  column  (not  necessarily the  first  column)of  X,X₂is  the

matrix of  Xwithout  the  jth column,β₁is  the  jth  regression coefficient and β₂ is the vector  of the remaining regression  coefficients.Let  ey  be  the  residual vector obtained  by regressing Yon  X₂and e₁be  the  residual vector obtained  by

regressing  X₁on  X₂.Consider a model

ey=γe₁+ξ

Prove that the least squares  estimate for γ is  β1.

[10 marks]

[Total:11 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图