代写ECO00032I ECONOMETRIC ANALYSIS SPRING 2025代写数据结构程序

ECO00032I

DEPARTMENT OF ECONOMICS AND RELATED STUDIES

ECONOMETRIC ANALYSIS

SUMMATIVE ASSIGNMENT - SPRING 2025

The submission deadline for the Econometric Analysis assignment is Thursday 29 May 2025, by 11am (UK time).

Introduction

You are expected to conduct an econometric analysis to answer the two research questions presented in pages 4 and 6 and submit a report of a maximum of 2,500 words. Instructions on how to structure your report are provided below.

The project data are a sample of cross-sectional data from the Quarterly Labour Force Survey (QLFS),   collected   between    October   and   December   2024.    The   data   set    is   called Project2025.dta. Instructions on how to download the data set and a description of the variables are presented in page 6. You are advised to use STATA to conduct the econometric analysis. Support after the project is released will be limited to purely technical help with STATA.

On the Econometric Analysis VLE site, you will find references to core undergraduate Labour Economics textbooks that should provide sufficient background for your assignment.

A detailed marking grid, which will be used for the overall assessment of your project and shared as individual feedback, is available at the VLE submission point. Markers will be looking  for  strong  evidence  of  a  sound  understanding  of key  concepts  and  methods  of econometrics,  ability to  conduct  an  econometric  analysis  as  well  as  critical  and  original thinking.

Therefore, we would  encourage  you  to  view  your project  as  a  way  to  ‘showcase’  your econometric skills. For example, by explaining how a test is constructed, how to interpret the results and what are the implications for your econometric model and estimates.   Further, we encourage you to take the space and time in your project to fully interpret your results, make your answer to the research questions you are investigating as clear as possible and discuss the limitations of your methods and results.

Computing

You are advised to use STATA. This package is the only one for which the course tutors will provide support. The dataset has a .dta format and can be opened directly with STATA.

You can download STATA on your own computer or laptop. You will find instructions on the Econometric Analysis VLE site in Learning by doing / Introduction to STATA. The software is also installed on all computers on campus.

Support

A Padlet collecting anonymous questions is available on the Econometric Analysis VLE site. This will be the only communication channel available. Please do not send emails to your course tutors, we will redirect you systematically to the Padlet.

You can ask clarification questions on the project outline and receive help on purely technical issues with STATA.   Your course tutors will not provide advice on how to conduct your econometric analysis. This is to ensure fairness and consistency.

Word limit and format

The project report should not be longer than 2,500 words of text and excessive length will be penalised: only the first 2,500 words will be graded. Please note that the project title, exam number, figures, equations, tables and references are not included in the 2,500 word count. Recommended word limits for each section are provided in brackets.

The main results (regression outputs, tests) should be integrated to the main body of your report. Additional tables of results, graphs and diagrams etc. can be presented in appendices and will not be counted within the 2,500 words. However, the appendices should not exceed eight pages. For example, you might include the calculation of test statistics in the appendices and the hypotheses, explanation of the test, results and interpretation in the main body of the project text.

Please give consideration to the readability of your project:

Use a standard font (Calibri, Arial or Times New Roman), size 12, font colour Black.

Your figures, tables and regression outputs should be legible and captioned.

You can provide screenshots of relevant STATA outputs or export the results in tables.

All materials (academic papers, textbooks) should be appropriately referenced using Harvard referencing style.

Your final report should be compiled in a single PDF document:

It is your responsibility to make sure that the PDF document is legible.

You do not have to submit your Stata logs or do file.

Your report will be marked anonymously. Do not include your name, student number or exam number.

Academic Integrity

Under no circumstances should you submit a project that you have worked on with another student, this is an individual project for you to complete on your own.

We strongly recommend that you consider the University of York guidance on how you can appropriately use digital tools (including generative Artificial Intelligence) to assist you in the completion of your assignment. The guidance also details inappropriate uses that you must avoid:https://www.york.ac.uk/students/studying/assessment-and-examination/ai/

Submission

The submission deadline for the Econometric Analysis assignment is Thursday 29 May 2025, by 11am (UK time).

Your project will be submitted electronically through the VLE. Please follow the instructions on the Econometric Analysis VLE site. You will also find important information on the exceptional circumstances process.

This formally assessed project forms 90% of your final module mark for Econometric Analysis (ECO00032I).

Research Questions and Project report outline

Your project report should answer the two research questions below and include the following sections (Section 1 – 1.1 to 1.5; Section 2 – 2.1 to 2.2).

Section 1

The  wage  equation  is  a  fundamental  concept  in  economics,  aiming  to  understand  the determinants of wages within a labour market (or “wage structure”). It explores various factors influencing wages including education, experience, skills, gender or firms’ characteristics. By analysing these  components,  economists  seek to  grasp the  dynamics  shaping  individuals' earnings, understand disparities in labour market outcomes and formulate policies to address income inequality.

Research Question 1

Using the Quarterly Labour Force Survey (QLFS) data, estimate and interpret an econometric model of the wage equation, with a specific focus on estimating the gender wage gap and returns to education.

Research Question 2

Using the QLFS data, evaluate the evidence that the gender wage gap changes for different levels of education.

1.1 Introduction and description of the economic model

Provide a brief introduction to the wage equation and consider variables that you would like to include in your model.  Briefly explain how the gender wage gap (i.e. differences in wages between men and women) could change for different levels of education.

[250 words]

1.2 Description of your econometric model(s)

Present your econometric model(s) in the form. of a population regression function. This should be your “preferred” or final model(s). Describe the variables included as well as the functional form. that you will be using.

You are advised to choose a semi-log model specification where the dependent variable is a logarithm.  You  are  still  encouraged  to  formally  investigate  the  appropriateness  of  this functional form in section 1.3. You can present more than one model but should explain why you think this is appropriate or relevant.

[300 words]

1.3 Presentation of your estimated model(s) and specification tests

Present your estimated model(s) in the form of a sample regression function and provide the relevant STATA output.

Present your specification tests (heteroskedasticity, misspecification tests), explain why they are relevant  to  consider  and  how  they  have  been  undertaken.  Present  the  results  of the specification tests and discuss the implications for your model and estimates.

[350 words]

1.4 Statement of the hypotheses to be tested

Your statement of hypotheses should include tests to investigate Research Questions 1 and 2. For  example,  you  can  present  tests  of  individual, joint  or  overall  significance,  tests  for differences in regression functions across groups.

For each test, present the null and alternative hypotheses and explain how you will undertake the test. The actual testing of your hypotheses and interpretation of results should be presented in Section 1.5.

[300 words]

1.5 Interpretation of your results

Provide an interpretation of the sign, magnitude and statistical significance of all estimated coefficients (based on appropriate standard errors given your specification tests undertaken in section  1.3).  Make  sure  that  you  interpret  your  results  appropriately  and  fully  given  the functional form of the model. Consider each of the partial regression coefficients fully in relation to whether the partial regression coefficient is, for example, attached to a dummy variable, or whether there is a quadratic form. in the explanatory variable of interest.

Provide and interpret the results of the tests you presented in Section 1.4 Provide an answer to Research Questions 1 and 2.

[500 words]

Section 2

2.1 Discussion and limitations

Discuss potential limitations of your data, approach and results. Specifically, discuss whether you can measure a causal effect of education on wages.

[300 words]

2.2 Endogeneity issues and possible remedies

Estimates of the relationship between education and wages are often considered to suffer from problems of endogeneity. Using examples covered during the module, explain how you might be able to overcome that problem if you had access to additional variables as part of the QLFS data set.

[500 words]

Data

As part of the project, you will be using real research data from the UK Data Service. This data was collected from real people who agreed for their data to be used for research and learning purposes. Before you can access this data, you need to agree to some important conditions of use. These conditions are presented on the Econometric Analysis VLE site.

The Project2025.dta data set is a sample from the Quarterly Labour Force Survey (QLFS) collected during the period October-December 2024. The QLFS is a voluntary sample survey of private households in the UK. The basic unit of the survey is the household and the data should be considered as a cross-sectional data set.

The sample you have been given has employees with permanent jobs aged 25 to 60 (inclusive) who have left full-time education.  There is a total of 4,992 employees.

In the QLFS dataset, employees are identified either as male or female. Education can be measured in different ways. The continuous variable edage provides the age at which the employee  left  full-time  education.  The  binary  variables none, gcse, alevels and degree represent the highest education qualification achieved by the employee.

You are allowed to create additional variables based on the variables already provided in the dataset (see list of variables p8, and summary statistics p8-9). For example, you can use a log transformation or create additional binary variables. Make sure that you explain clearly how you built, named and interpret these additional variables when you present your econometric models.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图