代做ECON7300 Semester 1, 2025 Project代写数据结构程序

ECON7300

Project

Semester 1, 2025

Instructions

•   Questions in this file should be answered by students whose family names start with a letter falling within the range A-K.

•   For Part I, use the Excel files Part1_Dataset1 and Part1_Dataset2 to answer the questions.

•   For Part II, use the Excel file Part2_Dataset1 to answer the questions.

•   For Part III, use the Excel file Part3_Dataset1 to answer the questions.

•  A 100% penalty will apply if your answers are not based on the questions and datasets assigned to your family name.

Part I: ANOVA

Note: For questions in Part I, assume the assumptions underlying ANOVA (i.e., randomness and independence, normality, and homogeneity of variance) are met. Use the closest degrees of freedom for the denominator to get critical values from the F-table and to find QU in the studentised range Q-table.

(1)      Using Part1_Dataset1, test at a 5% level of significance if there is any evidence of a significant difference in the average annual salary in thousands of US dollars (salary) for chief executive officers (CEOs) in four groups defined by the type of firm (type) where they are employed. Follow all the necessary steps to perform. the test   and verify your results using Excel/PHStat. Note: In your data, the variable “type” is   coded 1 for CEOs of industrial firms, 2 for those of financial firms, 3 for consumer product firms, and 4 for transportation or utilities firms.

(2)      If your results in (1) indicate that it is appropriate, use the Tukey-Kramer procedure to determine which firm-type groups differ in average annual salary. Use a 5% level of significance. Follow all the necessary steps to perform. the test and verify your results using Excel/PHStat.

(3)      To determine if alcohol consumption impacts students’ cognitive performance , ten students partake in an experiment on three consecutive Saturdays, with their time in seconds to solve a puzzle (time) recorded after a number of alcoholic drinks (drinks). The file Part1_Dataset2 displays the time to complete the same puzzle for the randomly assigned drink options: no alcohol on one of the Saturdays (zero standard drinks, coded 1), one standard drink of alcohol on another Saturday (coded 2), and five standard drinks of alcohol on another (coded 3). Hint. The variable “student” is the blocking variable.

Based on the information given, answer the following questions.

(a) At the 5% level of significance, is blocking effective? Follow all the necessary steps to perform. the test and verify your results using Excel/PHStat.

(b) Using a 5% level of significance, is there a significant difference in the mean time to solve the puzzle for the different drink options? Follow all the necessary steps  to perform. the test and verify your results using Excel/PHStat.

(c) If your results in (b) indicate that it is appropriate, use the Tukey procedure to determine which drink options differ in the mean solving time. Use a 5% level of significance. Follow all the necessary steps to perform the test.

Part II: Simple Regression Analysis

To study the relationship between expenditure on food (food) and total household expenditure (totexp), a researcher samples 1,519 households in the United Kingdom. The variables in the dataset (Part2_Dataset1) are:

•    food (Y, in UK pounds sterling per day)

•    totexp (X, in UK pounds sterling per day)

The dependent variable for your analysis is food.

Answer the following questions using Part2_Dataset1.

(1)      Estimate a regression model using X to predict Y. Include the regression output and state the simple linear regression equation.

(2)      Interpret the meaning of the slope coefficient.

(3)      Predict Y when X = 230.

(4)      Compute the coefficient of determination and interpret its meaning.

(5)      Complete the t test for the slope, following all the necessary steps. Assume a 5% level of significance.

(6)      Complete the F test for the slope, following all the necessary steps. Assume a 5% level of significance.

(7)      Complete the test for the correlation coefficient, following all the necessary steps.

Assume a 5% level of significance.

(8)      Construct a 95% confidence interval estimate of the mean Y when X = 230 for all households in the United Kingdom, and interpret its meaning.

(9)      Construct a 95% prediction interval of Y when X = 230 for a household in the United Kingdom, and interpret its meaning.

Part III: Multiple Regression Analysis

The following information was collected for a random sample of 114 countries: inflation, openness as proxied by imports as a percentage of GDP, per capita income, and whether the country was a major oil producer between 1973 and 1990. The variables in the provided dataset (Part3_Dataset1) are:

•     inf (Y, average annual inflation in percent from 1973 to 1990)

•    open (X1, openness measured as imports as a percentage of GDP from 1973 to 1990)

•     pcinc (X2, 1980 per capita income in US dollars)

•    oil (X3, coded 1 if major oil producer between 1973 and 1990 and 0 if not major oil producer in that period)

The dependent variable for your analysis is inf.

Answer the following questions using Part3_Dataset1.

(1)      Estimate a regression model using X1 and X2 to predict Y. Include the regression output and state the multiple linear regression equation.

(2)      Interpret the meaning of each of the slope coefficients.

(3)      Perform. a residual analysis by analysing the relevant residual plots. Is there any evidence that the regression assumptions have been violated? Explain your answers.

(4)      Determine the variance inflation factor (VIF) for each independent variable (X1 and X2) in the model. Is there reason to suspect the existence of collinearity? Explain your answer.

(5)      At the 5% level of significance, use t tests to determine whether each independent

variable (X1 and X2) makes a significant contribution to the regression model. Follow all the necessary steps. Based on these results, suggest which independent variables should be included in the model.

(6)      Test for the significance of the overall multiple regression model with two

independent variables (X1 and X2) at the 5% level of significance. Follow all the necessary steps.

(7)      Compute the coefficients of partial determination of the multiple regression model with two independent variables (X1 and X2) and interpret the meaning of each coefficient of partial determination.

(8)      Estimate a regression model using X1, X2 and X3 to predict Y. Include the regression output and state the multiple linear regression equation, the regression equation for major oil-producing countries, the regression equation for countries that are not major oil producers, and interpret the coefficient for X3.

(9)      Estimate a regression model using X1, X2, X3, an interaction between X1 and X2, an interaction between X1 and X3, and an interaction between X2 and X3 to predict Y.

Include the regression output and state the multiple linear regression equation.

(10)    Test the joint significance of the three interaction terms using a partial F test to

determine if the interaction terms significantly improve the regression model. Assume a 5% level of significance. Follow all the necessary steps. If you reject the null hypothesis, you also need to test the contribution of each interaction term separately (using partial F tests) to determine which interaction terms to include in the model).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图