代做CIVE 3013 Steel and Timber Design代写数据结构语言

CIVE 3013 Steel and Timber Design

STATE DRILL CORE LIBRARY FACILITY

DESIGN BRIEF

1.  PROJECT BACKGROUND

The South Australian Drill Core Reference Library hosts geological samples recovered from over  130 years of exploration for minerals and energy resources in South Australia. These irreplaceable samples represent valuable direct records of the geological materials retrieved from the depths of the crust, which will continue to be investigated and analyzed by new generations of geologists in industry, research, education and government. The facility consists of three main areas, that vary in use and their design and construction methods; the hylogger, the library and the administration building.  The facility was constructed in 2015 as part of the Tonsley Redevelopment, Clovelly Park.

2.  PROJECT SCOPE

The scope of this project is to design and document some of the main structural roof and floor elements for the Administration Building of the State Drill Core Library Facility. The focus will be on the part of the building located between Grids AB and AE, A4 to A20 on Structural Drawings ST-101, ST-102, ST-302, ST-301, and Architectural Drawings A126 and A127.

Firstly, determine the design loads on the building (remember to consider the whole building for wind loads) and then design the structural framing members using steel and timber. The structural elements you will be designing are a roof beam, column, lateral bracing system, and connection detail (for bonus marks).

The following items are not in the scope of this project:

•   Any concrete elements including the design of the first-floor slab

•   Earthquake design

•   Fire resistance design

•   Ground floor slab or footing design

3.  DESIGN CONSTRUCTION - LIBRARY

a)  Ground exterior walls: Lightweight stud wall or glazing with aluminium composite façade panels supported on steel framed fascia trusses. Refer to Architectural drawing A200 for details.

b)  Roof: Metal sheeting with insulation under, on steel purlins and rafters as shown on the architectural drawings A300, A301, and section detail drawings (A620, A621, A622 and A623).

c)   The ground floor is an industrial raft slab on the ground with pad footings.

4.  PROJECT TEAM

For each design, you are required to work in a project team of three (3). Each team will be more effective in their effort to address the project scope in the time duration allowed than an individual. Let your tutor know your preferred group by the end of Week 2. All team members MUST be in the same timetabled design project session.

5.  PROJECT ASSESSMENT

This total design project is worth 35 % of the course assessment separated into 3 submissions.

Stage 1            Design Loads

Stage 2            Steel Member Design

Stage 3            Timber Member Design

The detail of the elements required to be designed by your team, the allocated marks and suggested completion dates are documented in the tables on the last pages of this brief.

6.  PEER ASSESSMENT

At the end of each submission stage of the design project, you are required to assess yourself and    your     group    members     using    the     online     peer    assessment     tool     SPARK. (https://unisa.sparkplus.com.au/login.php)   You  are required to  answer each of the criteria questions and provide written feedback of at least 10 words for EACH group member. The RPF factor from SPARK (along with tutor and lecturer observations) will be used to modify your group’s mark to give you an individual mark for each stage of the design project.

7.  DESIGN METHOD and SOFTWARE USE

The calculations should be typed. The calculations MUST be neat, tidy, legible, easy to follow and logically laid out.  You may use spreadsheets to make your calculations clear for repetitive iterations as long as the first iteration including all the formula and workings are typed.

You are to use the structural analysis software Spacegass to analyze the roof wind truss ONLY to obtain the design actions including the bending moments, shear forces, and axial loads for the roof wind truss/bracing members.  You must provide detailed calculations for how you arrived at the input data using a cover sheet for any computer output.  The cover sheet will detail all the input you have entered into the software including:

-     Dimensional information between grid lines and other setout information

-     Dead,  live,  and wind load cases are labeled. Load locations,  directions and values identified

-     Labeled member sizes and connection types i.e. pinned, roller, fixed, etc.

Spacegass is installed in the computer pools in Buildings F, N, and P. Also, a Spacegass student version can be installed for free on your own laptop/home IBM compatible PC, downloaded from the Spacegass website using this link:  http://www.spacegass.com/student

You will need to enter your student details (name and email) to confirm that you are a student. Please put Khoi Nguyen as the lecturer and email address is Khoi.Nguyen@unisa.edu.au

8.  ADDITIONAL DESIGN INFORMATION

Dead Loads

For the roof dead load, you will need to determine the self-weight of the sheeting, purlins, insulation, and ceiling.  For the mechanical and electrical services within the ceiling space, allow an additional dead load of 0.5 kPa. This is in addition to the dead load for the self-weight that you have calculated.

Tip: Apply the services dead load for the downward case only. Do not add the services dead load in combination with the upward wind load. The exact location of services is unknown; therefore we assume the most conservative loading conditions for both the downward and upward loads. For instance, the maximum dead load for downwards and minimum dead load are added to the upward loads from the wind combination.

Wind Loads

The building is located adjacent to South Road, Clovelly Park, South Australia.  The facility is located on the side of a hill so use the website NatureMaps to determine if topographic multipliers will affect the wind speed. The wind load will vary according to the geometry of the building.

Roof Beams

The  roof  sheeting   will  be   fixed  to  purlins  running   along  the  length  of  the  building (approximately north-south for the particular section we are designing).  They will be bolted to cleats (small plates) that are welded to the top flange of the roof beams hence providing lateral restraint to the top flange of these beams. Roof beams can be Universal Beam (UB) or Welded Beam (WB) sections bending about their major X axis. Long-span roof beams may be pre- cambered upwards to balance downward deflection. This should be considered in your design.

Columns

Structural columns are located at each end of the roof beams.  Columns can be constructed from  rectangular  hollow  sections  (RHS),  square  hollow  sections  (SHS),  or  Universal Beam/Column sections (UB/UC), or Welded Beam/Column sections (WB/WC).  The walls will provide buckling restraint under axial loads for any columns.

9.  RESOURCES and REFERENCES

All these resources are available through the course homepage

1.   Australian Standard AS/NZS 1170 Structural Design Actions

a.   AS/NZS 1170.0:2002 Part 0: General Principles

b.   AS/NZS 1170.1:2002 Part 1: Permanent, imposed and other actions

c.   AS/NZS 1170.2:2011 Part 2: Wind actions

2.   Australian Standard AS 4100: 1998 (R2016)  Steel Structures

3.   Australian Standard AS 1720.1:2010 Timber Structures Part 1: Design Method

4.   Structural Drawings

5.   Architectural Drawings

6.  NatureMaps Website

7.   Roof Sheeting Table, purlin and CHS / SHS information Sheets

8.   Hot Rolled and Structural Steel Products - Onesteel

9.   Timber: Standard Sizes Chart

Other useful references:

Gorenc, B., Tinyou, R. and Syam, A., Steel Designers’ Handbook, 8th  edition, UNSW Press, 2012


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图