代做STAT3600 Statistical Analysis Assignment 3代写留学生Matlab程序

STAT3600

Assignment 3 (submit Q7c, Q10, Q11)

Deadline: 11 Apr, 2025

Note: (1) Numeric values should be presented in 4 decimal places. (2) Show the intermediate steps for Q4 Q11.

1.    A personal officer in a governmental agency administered four newly developed aptitude tests to each of 25 applicants for entry-level clerical positions in the agency. For purposes of the study, all 25 applicants were accepted for positions irrespective of their test scores. After a probationary period, each applicant was rated for proficiency on the job. In order, the job proficiency score (y) and the scores on the four tests (x1, x2, x3, x4) for the 25 employees were stored in ‘job.txt’.

a.   Fit a regression model for 4 predictor variables to the data. Write down the fitted regression model. State clearly the assumptions.

b.   Construct the ANOVA table and hence test whether there is a regression relation. Use α = 0.05.

c.   Find the 99% confidence interval for each of the regression coefficients.

d.   Test whether x2 can be dropped from the regression model given that x1, x3 and x4 are retained. Use the F test statistic and α = 0.05. State the hypotheses and conclusion.

e.   Determine the subset of variables that is selected by the forward selection method, based on the entry level α = 5%. Show your steps. Report the fitted final selected model.

f.   Determine the subset of variables that is selected by the backward elimination method, based on the removal level α = 5%. Show your steps.

g.   Find the values of R2 and Cp for the full model and the selected model in (e). Comment on the results.

2.    A research laboratory was developing a new compound for the relief of severe cases of hay

fever. In an experiment with 36 volunteers, the amounts of the two active ingredients (factor A and B) in the compound were varied at three levels each (1 = low, 2 = medium, 3 = high).

Randomizations was used in assigning four volunteers to each of the nine treatments. The data on hours of relief are stored in ‘hayfever.txt ’. Assume that a two-way classification model is appropriate for the above data.

a.  Compile a two-way ANOVA table to test whether the effects of the two factors are additive or not, using a 5% significance level.

b. Test whether or not main effect for each ingredient is present, using a 5% significance level.

c.  Given your answer to (a), is it meaningful to test for main factor effects? Explain.

d. Construct a 95% confidence interval for the pairwise comparison in hours of relief between the low and the medium levels of ingredient A. When setting up the contrast, you may average over the three levels offactor B using equal weights.

3.    The staff of a service center for electronic equipment includes three technicians who specialize in repairing three widely used makes of disk drives for desktop computers. It was desired to study the effects of technician (factor A) and make (factor B) on the service time. ‘diskdrive.txt’ stores the data showing the number of minutes required to complete the repair job in a study where each technician was randomly assigned to five jobs on each make of disk drive.

a.  Formulate a two-way classification model for the above observed data.

b. Test at the 5% level whether there are significant interactions between “technician” and“make”

c. According to your findings in (b), will it be meaningful to compare the difference among the technician WITHOUT specifying the make" of the disk drives?

d. Calculate the sample mean of the 10 observations for each technician.

e.  Show that the variance of the difference between the any two sample means considered in (d) is 2σ2/15, where σ2  is the common variance assumed for the number of minutes for each repair job.

f.  Calculate an estimate of σ based on the two-way classification model specified in (a).

g. Derive from (d), (e) and (f) a 95% confidence interval for a contrast in number of minutes for repair jobs between the technicians 1 and 3.

4.    For the cell means model, show that the least squares estimators ofthe parameters μi are

maximum likelihood estimators for the normal error, Eij~N(0, σ2).

5.    For a 1-way ANOVA model show that

6.    For a 1-way ANOVA model, show that

7.    Consider a regression analysis of Y on X1 – X4 for 25 observations. The SSE for various sub- models are given below.

None

49.3302

X1, X2

35.4285

X1, X2, X3

30.6408

X1

35.4303

X1, X3

30.9165

X1, X2, X4

15.1429

X2

49.2882

X1, X4

15.4802

X1, X3, X4

13.7342

X3

40.2796

X2, X3

40.0287

X2, X3, X4

21.3869

X4

26.4931

X2, X4

26.3378

X1, X2, X3, X4

12.9804

X3, X4

22.1175

a.   Apply simple linear regression model with one regressor at a time. Select regressors whose effects are significant at the 10% level of significance. Report SSR, MSR, MSE, F-value and conclusion.

b.   Apply multiple regression model using all the selected regressors in (a). Test the significance of the regression coefficients at the 5% level of significance. Report the ANOVA table, F-values and conclusions.

c.   Determine the subset of variables that is selected by the backward elimination method, based on the removal level F = 4. Show your steps. Report SSR, MSE and F-value at each step. Report the selected regressors.

d.   Determine the subset of variables that is selected by the forward selection method, based on the entry level F = 4. Show your steps. Report SSR, MSE and F-value at each step. Report the selected regressors.

e.   Determine the subset of variables that is selected by the stepwise method, based on the entry level F = 4 and removal level F = 3. Show your steps. Report SSR, MSE and F-value at each step. Report the selected regressors.

f.   Determine the subset of variables that is selected by adjusted R2. Show your steps. Report the fitted final selected model.

g.   Determine the subset of variables that is selected by Cp. Show your steps. Report the fitted final selected model.

h.   Determine the subset of variables that is selected by AIC. Show your steps. Report the fitted final selected model.

i.   Determine the subset of variables that is selected by BIC. Show your steps. Report the fitted final selected model.

8.    You are given the following matrices computed for a polynomial regression analysis Y = β0 + β1X + β2X2 +ε .

The matrices are properly ordered according to the regression function given above.

a.   Calculate the LSE of the regression coefficients.

b.   Construct an ANOVA table and thus test at the 5% level of significance whether there is a regression of Y on X and X2.

c.   Test at the 5% level of significance whether the quadratic term is necessary.

d.   Estimate the mean for Y when X = 1.5. Construct a 95% confidence interval for the estimation.

9.    You are given the following matrices computed for a regression analysis with interaction Y = β0 + β1X1 + β2X2 + β3X1X2 + ε .


The matrices are properly ordered according to the regression function given above.

a.   Calculate the LSE of the regression coefficients.

b.   Construct an ANOVA table and thus test at the 5% level of significance whether there is a regression of Y on X1, X2 and the interaction term.

c.   Construct a 95% confidence interval for each of the regression coefficients.

d.   Test at the 5% level of significance whether there is an interaction effect.

e.   Predict the value of Y for an individual whose X1 = 1.5 and X2 = -0.5 Construct a 95% prediction interval for the individual.

10.  Seven observations of a dependent variable X and a factor A are given as follows.

A

1

1

1

2

2

3

3

X

0

1

0

4

3

3

5

Consider a one-way classification model.

a.  Write down a cell-means model for the analysis.

b. Estimate the parameters in (a).

c.  Obtain the fitted values for X.

d. Compile the ANOVA table.

e.  Conduct a size 0.05 test to determine whether or not the means for X for the three levels of A differ.

f.  Construct a 95% confidence interval for the mean for X for each level of A.

g. By the Bonferroni’s method, construct the simultaneous 95% confidence intervals for the pairwise comparisons among the three levels. Comment on the comparison.

h. Estimate the difference between the mean average for X of Levels 1 and 2 and the mean of X of Level 3. Constructure a 95% confidence interval and hence, comment on the difference.

11.  The following data of X are given for three levels offactor A and 2 levels offactor B. There are two observations for each treatment.

A

1

2

3

B

1

0

1

5

6

4

3

2

2

2

7

9

2

0

a.  Calculate and plot the means for X for the six treatments. Does it appear interaction effects between factors A and B? Explain.

b. Write down a factor-effects model for the 2-way classification model with interaction.

c.  Estimate the main effects of factors A and B and the effects of interaction, respectively.

d. Compile the ANOVA table.

e.  Test the treatment effects at the 5% level of significance. State null and alterative hypothesis, decision rule and conclusion.

f.  Test whether or not main effects for factor A, using a 5% significance level. Write down the null and alterative hypothesis, decision rule and conclusion.

g. Given your answer to (e), is it meaningful to test for main factor effects? Explain.

h. Construct Bonferroni’s simultaneous 95% confidence intervals for the total six pairwise comparisons among the three levels offactor A among level 1 offactor B and among the three levels offactor A among level 2 offactor B. Comment on the comparisons.

i.  Assume there is no interaction between the two factors. Compile the ANOVA table. Test whether or not main effects for factor A and B, respectively, using a 5% significance level.

12.  This study is to establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profiles. The hardness and the strain data are stored in ‘material’.

a.  Consider a simple linear regression model where hardness is the response variable and strain as the independent variable.

i.      Report the fitted model.

ii.      Test at the 5% level of significance where strain has an effect on hardness.

iii.      Report the R2  and thus, comment on the fitness.

b. Produce a scatter plot hardness against strain. Is there a linear relationship?

c.  Consider a 4-th order polynomial regression.

i.      Report the LSE of the regression coefficients.

ii.      Test at the 5% level of significance for each of the regression coefficients.

iii.      Test at the 5% level of significance where the non-linear terms of strain have some

effects on hardness or not. State the null and alternative hypothesis, decision rule and conclusion.

iv.      Estimate the mean of hardness when strain = 0.8. Construct a 95% confidence interval for the estimate.

13.  This study aims to verify the additive role of lung CT-Volumetry in testing the efficacy of three widely distributed COVID-19 vaccinations; namely the "Sinopharm", "Oxford-AstraZeneca", and "Pfizer-BioNTech" vaccinations. The CT-Severity scores and the vaccinations used for a number of patients are stored in ‘vaccine.csv’. The variables are given as follows.

Variable

Description

CTscore

CT-score

Vaccine

Vaccination

1 = Non Immunized, 2 = Sinopharm, 3 = Oxford-AstraZeneca, 4 = Pfizer-BioNTech

Consider a one-way classification model.

a.  Compile the ANOVA table.

b. Conduct a size 0.05 test to determine whether or not the mean CT-scores are difference among the four vaccinations. State the null and alternative hypothesis, decision rule and conclusion.

c.  Calculate the mean CT-score for each vaccination. Construct a 95% confidence interval for each of the means.

d. By the Bonferroni’s method, construct the simultaneous 95% confidence intervals for the pairwise comparisons among the four vaccinations. Comment on the comparisons.

e.  Estimate the difference between the mean CT-score of non-immunized patients and the the average of the mean CT-scores ofthe three vaccinations. Constructure a 95% confidence interval and hence, comment on the difference.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图