代写STAT3600 Statistical Analysis Assignment 2调试R语言程序

STAT3600

Statistical Analysis

Assignment 2 (submit Q4, Q5)

Deadline: 14 Mar, 2024

Note: (1) Numeric values should be presented in 4 decimal places. (2) Do not use computer and show the intermediate steps for Q1 to Q4.

1.   A psychiatrist wants to know whether the level of pathology (Y) in psychotic patients 6 months after treatment can be predicted with reasonable accuracy from knowledge of pretreatment symptom ratings of thinking disturbance (X1) and hostile suspiciousness (X2). The data collected on 15 patients are stored in ‘pathology.dat’. Consider a multiple linear regression model with Y as the dependent variable and X1  and X2  as the independent variables.

a.   Write down the regression model. State clearly the assumptions.

b.   Find the least squares estimates of the regression coefficients. Interpret the results.

c.   Construct the ANOVA table and hence test whether there is a regression of Y on X1  and X2 at the 5% level of significance.

d.   Estimate the covariance matrix of the estimates.

e.   Find a 95% confidence interval for each partial regression coefficient.

f.   Test whether β1 = 32 or not at the 5% level of significance.

g.   Test whether β2  = -10 or not at the 5% level of significance.

h.   Calculate the R2.

i.    Considering a case with x1  = 3 and x2  = 6, find the predicted level of pathology and the

confidence interval for the mean response and the prediction interval with 95% confidence level.

2.   Consider a general linear hypotheses

C is of dimensions r × p with rank r and d is of dimensions r × 1. Prove that

a.   under the reduced model, the least squares estimator is

b.   the difference SSEr SSEf can be expressed as

3.   Consider a multiple linear regression model

yi = β0 +β1xi1 + … +βipxip +εi

where xij are constant, βj are parameters, εi are iid N(0, ) and i = 1, … , n. A weighted least square estimator for βj is obtained by minimizing

where wi are some predefined known constant values and Prove that the estimators of the regression coefficients are given as

and the variance-covariance matrix of the estimator is

W is a diagonal matrix of w1, … , wn .

4.    Do not use computer. You are given the following matrices computed for a regression analysis Y = β0 +β1X1 +β2X2 +ε .

The matrices are properly ordered according to the regression function given above.

a.   Calculate the LSE of the regression coefficients. Describe the effects of the regressors on the response variable quantitatively.

b.   Calculate SSE and MSE.

c.   Calculate the standard error of the estimates.

d.   Calculate a 90% confidence interval for β1 and β2 , respectively.

e.   Construct an ANOVA table. Test whether there is a regression of Y on X1  and X2  at the 5% level of significance.

f.   Calculate R2. Comment on the fitness of the model.

g.   Test at the 5% level of significance whether each of X1  and X2  is effective, respectively.

h.   Test at the 5% level of significance whether β1 +2β2  = 0.

i.    Test at the 5% level of significance whether β1 +2β2  = 0 and β1 +β2  = 1, simultaneously.

j.    Estimate the mean of Y when (X1, X2) = (1, -1). Construct a 95% confidence interval for the estimate.

k.   Estimate the means of Y for two cases where = (1, -1) and =

(-1,0.5). Construct a 90% simultaneous interval based on (i) Bonferroni’s method and (ii) Scheffe’s method.

5.    This study aimed to explore the relationship between aggravated insomnia and COVID-19- induced psychological impact on the public, lifestyle. changes, and anxiety about the future. The data are stored in ‘insomnia.csv’ and the variables are given as follows.

spiegel

Spiegel Sleep Questionnaire:

0 – 42

higher the scores, the more severe the insomnia.

fcv

FCV-19S:

level of fear ofCOVID-19

0 – 35

Higher the scores, the greater fear ofCOVID-19

sas

Severity of an individual’s anxiety status: 0 – 80

higher the scores, the more severe anxiety

sds

Severity of an individual’s depression status: 0 – 80

higher the scores, the more severe depression

age

18 or above

a.   Formulate a multiple linear regression model for the dataset, using spiegel as the response and the remaining variables as regressors.

b.   Calculate LSE’s for the regression coefficients and their respective standard errors.

c.   Test the significance of each regression coefficient at the 5% level of significance.

d.   Construct an ANOVA table and test whether there is a regression of spiegel on the regressors at the 5% level of significance.

e.   Calculate the R2  statistic for the model. Do you think the model is adequate to explain the variation of severity of insomnia among the subjects under study?

f.   Construct 90% confidence intervals for the regression coefficients.

g.   Describe how the significant regressors affect the severity of insomnia.

h.   Test at the 5% level of significance whether both the coefficients of sds and age are zero.

i.    Test at the 5% level of significance whether the coefficients of sas and sds are the same.

j.   Predict the value of Spiegel for an individual with the following values. Construct a 95% prediction interval.

fcv

sas

sds

age

12

20

15

45




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图