代写ECET 35901 Computer Based Data Acquisition Applications Summer 2025代写C/C++编程

Summer 2025 Course Syllabus

ECET 35901 – 001 (CRN: 36294)

Computer Based Data Acquisition Applications

Meeting day(s) and time(s): Asynchronous Learning

Instructional Modality: Online  Learning

Course credit hours: 3 credits

Prerequisites (if any): Undergraduate level ECET 17700  Minimum Grade of D- and Undergraduate level ECET 17900  Minimum Grade of D-

Course Description

This course focuses on the study and application of computer based data acquisition (DAQ) systems. Concepts of high  resolution and high throughput data acquisition are introduced and applied. Students learn and  use programming and scripting languages to discover the interfacing, advantages and limitations of computer based (DAQ) systems.

Learning Resources, Technology & Texts

Informed Learning resources: Necessary contents will be provided

Software/web resources:

○    Thonny, Node-RED, Docker

Other Course Materials required:

○     Evaluation board for a MEMS microphone -  SPH0645LM4H

( https://www.digikey.com/en/products/detail/adafruit-industries-llc/3421/6691114)

○     Raspberry Pi 4 Model B

○    5V 3A USB-C Power Supply

○     Male-to-male micro-HDMI to HDMI cable .

○      Monitor with a HDMI port.

○     USB Type-A Keyboard & Mouse

○     >8 GB Micro-SD card & micro-SD to SD card adapter.

Windows PC w/ SD Card Slot

○     Breadboard

○    4 Single Pole Double Throw (SPDT) Switches

○     Breadboard Wires

○    Common Cathode Seven Segment Display (Common Anode version is also possible)

○     330 Ω Resistors

○     MCP3008 ADC

○    Two 10 kΩ Potentiometers

○    Two LEDs

Brightspace learning management system:

Access the course via Purdue’s Brightspace learning management system. Begin with the Start Here tab, which offers further insight to the course and how you can be successful in it. It is strongly suggested that you explore and become familiar  not  only with the site navigation, but also with content and resources available for this course . See the Student Services widget on the Brightspace homepage for resources such as Technology Help, Academic Help, Campus Resources, and Protect Purdue.

https://purdue.brightspace.com/d2l/home/1015185

Software/web resources: Internet, Google account

Hardware requirements: PC

Use of artificial intelligence (AI) or Large Language Models (LLM) in this course: The course does not cover AI or LLM-related topics, but the recording software (Camtasia) will be used to access students’ assessment by the instructor

Tutoring support:

○    The Academic Success Center, located in Wiley Hall, Room C215, provides a variety of proactive, practical and approachable academic support services for undergraduate students.

○    Visit Ask  a  Librarian to connect with helpful resources and services provided by the  Purdue Libraries and School of Information Studies for course assignments and projects.

○     Brightspace learning  management system (LMS)  Access the course via Purdue’s Brightspace learning management system. Begin with the Start Here tab, which offers further insight to the course and how you can be successful in it. It is strongly suggested that you explore and become familiar not only with the site navigation, but also with content and resources available for this course .  See the Student Services widget on the campus homepage for resources such as Technology Help, Academic Help, Campus Resources, and Protect Purdue.

Learning Outcomes

After completing this course, the successful student will be able to:

1.          Define, compare and contrast common data acquisition terms.

2.          Analyze the advantages and limitations  of DAQ systems.

3.          Demonstrate proficiency with software tools and computer based data acquisition.

4.          Develop user-friendly applications for the purpose of DAQ system control.

5.          Collect, analyze, and reduce data from a system for the purpose of written and oral reporting.

Assignments

Practical  Assignments: these assignments will be made throughout the semester. Due dates will be provided.

Q&A submissions: This assignment will be due at the end of the course  period, students will be asked to design questions and answers relevant to each practical assignments.

●    Grades will be assigned on the basis of the students overall understanding of the material.   This will include the two assignments.  The general breakdown of grading is as follows:

○    80%       Practical Assignments (PA): 8 PAs, each PA worth 10% .

○     10%      MCQ&A: Students designed Multiple Choice Questions and Answers relevant to each PA.

○     10%      Final project

Grading Scale

In this class, grades reflect the sum of your achievement of learning outcomes throughout the semester. You will accumulate points as described in the assignments portion above, with each assignment graded according to a rubric. At the end of the semester, final grades will be calculated  by adding the total points earned and translating those numbers (out of 100) into the following letters (there will be no partial points or rounding) .

●    A          90 and above

●    B            80-89

●    C            70-79

●    D          60-69

●    Fail       <59.9

± grades will be given within each letter grade range.

Please check the Add/Drop calendar for the finaldate to withdraw from a course with a W or WF for Summer 2024.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图