代写ABEE4090 Assignment - Renewable Energy Technology Design and Appraisal调试R语言程序

Renewable Energy Technology Design and Appraisal (ABEE4090)

Assignment 2: Design/sizing and Assessment of Renewable Energy Systems

Introduction

This Assignment involves design exercise of three renewable energy systems (a small-scale building integrated wind turbine, a photovoltaic system, and a solar thermal system) for electricity and hot water supply for a typical Care Home for up to 20 residences, at your own choice of location, as follows.

1.   The first part includes theoretical analysis involving analytical calculations to assess the Care Home energy requirement, update solar radiation data of the energy resources assessment (Part 1 of the ABEE4090 assignment, given on 14th  Feb 2025) and design sizing of three renewable energy systems to meet the required building loads as outlined below.

2.   A computer modelling exercise to assess the design completed in section 1, above, and predict the annual energy generation of the renewable energy systems, using a suitable computer simulation program (RETScreen, PVsyst or any appropriate computer model)

3.   Carry out a cost appraisal of the system designed in section  1 above, to find out the financial and environmental feasibility.

The aims ofthe Course work

The project will provide:

  An opportunity to gain knowledge and develop professional skills on weather data analysis, building load assessment, and exercise design sizing of renewable energy systems to meet the required building energy loads at a given climate location.

Project Brief: ABEE4090 Main Assignment

Design sizing of three renewable energy systems

You are asked to carry out a design study of three renewable energy supply systems based on a solar PV system, a small-scale building integrated-wind turbine for electricity generation, and a solar thermal water heating system for hot water supply for a typical care home at your  home village or town. The average number of residences in the care home may be taken as 20 people. The building roof space may be assumed for a building plan to accommodate 20 self-contained rooms, living/seating area, a kitchen, dining area, reception/offices, and visitors, space (See Annex 3). The roof of the building may be considered as flat or tilted roof as appropriate, based on the climate.

Task 1.1         Part 1 - Solar radiation data calculations (already completed)

You are required to update and use the weather data obtained in ABEE4090 Assignment Part 1 of the coursework for use in the design exercise (BEE4090 Main Assignment). You are also required to provide details of site specifications including solar radiation (from Part 1 CW), ambient air temperature, and wind speed data, along with simple diagrams illustrating the proposed building roof (orientation & tilt) space allocated for the PV and the thermal solar arrays and the surrounding scene for the wind turbine installation accompanied by analysed wind speed data and direction (Wind rose) if available.

Task 1.2         Hot water system

Under the Health Technical Memorandum, the minimum hot water temperature in the storage for care homes should be between 55 °C, however at the point of use the water should be thermostat controlled using mixed taps to ensure water temperature between 38 and 41 °C for winter and summer respectively, due to the vulnerability of the users. The hot water use for summer and winter may vary between 40 to 50 litres, respectively, for washing and showering, per patient, including the support person,s need, at tap temperature. For other climates, you may adjust these values to suit your climate hot water requirements. For the heating and cooling purposes, you may use any other software to estimate the building heating or cooling load.

The main water supply temperature for the water heating part could be assumed constant at 18。C in summer and 8oC in winter. Again, in the case of hot and moderate climates, you may choose a temperature range that suits your location.

Typical ambient temperature for summer and winter conditions for cold climates are given in Annex 1, however, you may use any other appropriate data, if necessary, based on your location. These could be downloaded using any appropriate sources and should be properly referenced.

You may use a suitable solar collector type for your design suite, but if you would prefer, you may use any suitable solar collector with specifications given in this link:

https://www.spftesting.info/data/1.kollektoren/?l=en.

1.2.1 Use an appropriate method to determine the total solar array area required to meet the care home hot water requirement. You may optimise your design either on summer or winter load basis and weather conditions, but you are required to explain how to meet any shortage or how to use the surplus energy as a result of your proposed design requirements.

1.2.2 Size a suitable hot water storage tank and propose a suitable configuration for the solar thermal system; detailing the necessary components required to ensure adequate hot water supply, at a temperature range required by the Health Technical Memorandum.

For space heating cooling, these may be determined by the heating and cooling comfort zone of the location.

1.2.3 Calculate the hourly and the total daily energy delivered by the system and the hot

water tank temperature profile for winter and summer months of the year (one day for  each month), using the daily values of the mid of the month as average values for each month.

Task 1.3         Electrical energy systems:

For simplicity, you may assume that the daily average electrical loads ofthe care home for the 6 months of October, November, December, January, February, and March are the same. Similarly, you assume that the building electricity load for the other 6 months of the year (April, May, June, July August, and September) are the same. Assuming that the system is grid connected, you are required to estimate the care home building electricity load profile based on the appliances and the daily operating hours under your chosen location. Consider appropriate appliances for your own location. Example may include, but not limited to space lighting, cooling fans, kettles, washing machine, dish washer, televisions, microwave, fridges, mobile chargers, emergency lights, exits lighting, alarms systems.

Tasks to perform. include:

1.3.1 Use an appropriate method to determine the total PV array area required to meet the required proportion of the building electrical load. Again, you may base your design either on summer or winter load conditions, but you are required to explain how to meet any shortage or how to use the surplus energy as a result of your proposed PV  size.

1.3.2 Select a suitable inverter and any other necessary components for the PV system and propose a suitable configuration for the PV system; detailing specifications of all the components considered for the PV system.

1.3.3 Calculate the hourly and the total daily energy delivered by the system to the load, and  the grid import/export profile for the winter and the summer months (one day for each month) of the year, using the daily values of the mid of the month as average values for each month of the year.

You may use the characteristics of the PV module given in Annex 2, but you may also choose a suitable commercial PV module for your system, based on the climate.

Task 1.4         Wind turbine sizing

For the wind turbine sizing - assume that the variation of the coefficient of performance (CP) of the wind turbine with the wind speed is given by the equation:

CP = 0. 055U - 0.0032U2

Where Uis the wind speed in m/sec. Assume an appropriate overall efficiency for the generator, i.e., the transmission system and the electronic systems including the AC/DC inverter. You may also use a different value for the coefficient of performance of the wind turbine, based on the wind turbine type that you may choose, if available.

1.4.1 You should use Bins or any other appropriate method to arrange the data in a suitable format that will enable you to calculate the annual wind energy production. An excel spreadsheet which will guide you arranging your wind data, for the calculations of the wind energy generation is also available on the Moodle. Wind speed data for a period of one year are given in an excel file which can be downloaded from the Moodle.

1.4.2 Size a suitable wind turbine that may meet part of the electrical energy load following the design of the PV system. Use the wind data analysed in section 1.4.1 to calculate the wind turbine energy production. This should enable you to adjust the size of the wind turbine in relation to the PV system to deliver the required electrical energy for the Care Home at an appropriate cost.

What to calculate for the electrical energy systems?

Determine the PV array area, and wind turbine rotor diameter that would enable the Care Home to provide at least 50% of the annual electricity load from the renewable energy systems. Use a suitable combination of PV array and wind turbine which ensures that at least 60% of the renewable energy is provided using the PV system, and the rest by the wind turbine.

Use the PV system and wind turbine specifications obtained above, to estimate the daily electrical energy output profile for mid-winter and mid-summer months of the year (using mid- month day values as average for each month), annual energy supplied and also the electricity imported or exported to the grid under these conditions. For the wind turbine generation, assume that the data given starts from 1st January of the year.

Although cost may not be the criteria of your design sizing, for the purpose of cost analysis use the current commercial PV and wind turbine costs. Perform a sensitivity analysis of the relative capacity of the PV and the wind turbine that you may propose for the project.

Complete the cost analysis and calculate the unit energy cost of the proposed renewable energy systems and compare this with the current energy supply cost for your chosen location. You may perform. a simple life cycle cost analysis to determine the energy cost and the possible payback periods ofthe renewable energy systems.

C) Design simulation tools analysis

Use a suitable computer design tool (e.g., RETScreen, PVsyst, PVGIS or any other relevant  program) depending on the system, to analyse and predict the power of the systems designed above. Estimate the annual energy production of each system designed above using the computer design tool and compare these with the values obtained using the analytical calculations. Discuss and reflect on any discrepancies in the results.

For the design tool, generate the data using the facilities provided by the design tools program. If necessary, use data from the nearest meteorological station, or download these from any other appropriate software, e.g., NASA website, PVGIS, Meteonorm, WRDC etc.

Final Report

You should write up a report that comprises the above tasks, and should be around 4000 words plus any figures, tables, and appendices. You should present the key results inside the text body, and any further complementary data tables should be presented in the appendix.

Your report  should be submitted electronically to Moodle no later than  3:00 PM on the submission date. This should include the design exercise report and the Excel spreadsheets used for design calculations.

Report Structure:

The design exercise report should be about 4000 words (excluding table of contents, tables and figures captions, references, and appendices), and should have an appropriate and correct structure, which should include:

  Cover Page with Student Name and ID

  Title page which should include the Course Work Title, Student name and ID

  Abstract -Summarising the work carried out

  Contents Page including the Figure and Table list.

  Introduction to the Assignment

  Aims and objectives ofthe Assignment.

  Methods and strategies used to achieve the study outcomes.

  Details of all the tasks completed in the Assignment, with sample calculations

   Results and discussions

  Summary specifications ofthe proposed systems.

  Conclusions summarising the proposed energy system and your own reflections on the design.

  References

  Appendix (if any)

Plagiarism

You are reminded of the need to reference your work appropriately and urged to read the guidance on plagiarism and its avoidance available in the Faculty Postgraduate Student Handbook.

Assessment

This is an individual assignment and therefore should be of your own work. Other people’s work should be clearly appreciated and appropriately referenced. The report will be assessed according to the following criteria:

•   Quality of the work in terms of achieving the objectives ofthe assignment.

•   Evidence of effort made to complete the work, including data search, assumptions made and justifications, calculations, and sample calculations.

•   Critical thinking, discussion, and  reflection on the information presented and their relation to the assignment.

•   Clarity and justifications ofthe arguments presented.

•   Showing awareness and understanding of scientific facts relevant to the module and the assignment.

•   Completion of the tasks assigned in this work.

•   Ability to structure and present the work carried out professionally.

•   Appropriate referencing of materials from other people’s works.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图