代做CHE216 Assessed coursework 3帮做R编程

CHE216

Assessed coursework 3

Deadline for submission 16:00 Tuesday may 13th

These questions are on the two remaining topics not yet assessed – (a) molecular bonding through symmetry adapted linear combinations, and (b) spectroscopic transitions.

They are written in the style. of what will appear in your exam.  These are not your exam questions, but they are written as if they were actual exam questions on these topics. In your exam, there will be 4 questions, worth 25 marks each. Hence, the questions below are worth 25 marks each. In that way, the marks  reflect  actual marks in an exam. However, your coursework mark will be reported out of 100.

In attempting these questions keep in mind that your exam will be 120 minutes along. Hence, as these two questions represent half of an exam, one hour would be available to complete them in an exam (~30 minutes each). You might initially try to attempt these questions under timed exam conditions as a test of where you are now. You can then use the two-working week period to polish your answers, and then during revision re-try to complete them within the hour.

Question 1

Consider planar molecule with D3h  symmetry of the type AB3. A and B are elements of the periodic table. Elements A and B have s and p valance electrons. In this question, you will  determine the symmetry-adapted linear combinations (SALCs) of thep atomic orbitals of element B that can participate in σ bonding with the s atomic orbitals on the central atom A.

D3h

E

2C3

3C2

σh

2S3

3σv

 

 

A1

1

1

1

1

1

1

 

x2+y2, z2

A2 

1

1

-1

1

1

-1

Rz

 

E′

2

-1

0

2

-1

0

(xy)

(x2-y2, xy)

A1 ′′

1

1

1

-1

-1

-1

 

 

A2 ′′

1

1

-1

-1

-1

1

z

 

E ′′

2

-1

0

-2

1

0

(Rx,Ry)

(xz,yz)

(a)  Considering only the Bp orbitals (one from each B atom) directed toward the central A atom, and only s orbitals on atom A, construct the reducible representation (Γred) for their combination using the D₃h character table. Clearly explain how each character in Γred  is obtained.                                                                                                                 [7 marks]

(b)  Reduce your reducible representation into a sum of irreducible representations.         [6 marks]

(c)  With a brief explanation of your reasons, identify the valence orbitals (s and p) on A that can participate in σ bonding. For each orbital, state its symmetry under D₃h.            [6 marks]

(d)  Using the results from parts (b) and (c), determine which SALCs ofthe B atoms can

combine with which A orbitals to form. bonding molecular orbitals. Indicate which interactions are symmetry-allowed and explain why.                                           [6 marks]

Question 2

(a)  In the context of molecular electronic spectroscopy (e.g., UV-vis absorption spectroscopy), explain what is meant by saying that an electronic excitation within a molecule is electric dipole allowed.             [3 marks]

(b)  In what ways does molecular symmetry influence whether such a transition can occur?          [2 marks]

(c)  State the two main selection rules that determine whether an electronic transition is electric dipole-allowed in a molecule with a centre of inversion. Give a brief explanation of each.   [5 marks]

(d)  Explain how group theory can be used to determine whether a transition is dipole-allowed.   [5 marks]

(e)  Describe how the direct product of irreducible representations is used in this context.    [5 marks]

(f)   Consider a transition between an A2u ground state to a T1u excited state of an Oh complex.

With an explanation of your method, use group theory to prove that this transition is dipole forbidden. Hint: You do not need the character table to prove this.                    [5 marks]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图