代做MATH3014-6027 Design (and Analysis) of Experiments SEMESTER 2 EXAMINATION 2022/23代做留学生SQL语言

MATH3014-6027 Design (and Analysis) of Experiments

SEMESTER 2 EXAMINATION 2022/23

1.    [25 marks]

An experiment was carried out to compare the effect of the type of catalyst used in  the reactions on concentration of one component of a liquid mixture. Four catalysts were considered, and the results are given in Table 1.

Table 1: Catalyst experiment: percentage concentration from four different catalysts.

Catalyst 1

Catalyst 2

Catalyst 3

Catalyst 4

58.2

56.3

50.1

52.9

57.2

54.5

54.2

49.9

58.4

57.0

55.4

50.0

55.8

55.3

51.7

54.9

(a)  [5 marks] Write down a suitable unit-treatment model for the data yij ,

i = 1, . . . , 4; j = 1, . . . ni and state any assumptions your model makes.

(b)  [10 marks] Complete the ANOVA Table 4, comparing a unit-treatment model to the null model. Using the table, test the hypothesis of no effect of catalyst at the 5% level.

Table 2: Catalyst experiment: ANOVA table

Source

Degrees of freedom

Sum of squares

Mean square

F-ratio

Treatment

Residual

34.562

-

Total

-

-

(c)  [10 marks] Test all pairwise differences at an exact experiment-wise level of 5%.

You may find the following quantities from R useful.

qf(0.95 ,  3 ,  12)

##  [1]  3.49

qt(1  -  0.025  /  6 ,  12) ##  [1]  3 . 15

qtukey(0.95 ,  4 ,  12)

##  [1]  4 . 2

2.   [25 marks]

An experiment was carried out to compare the effect of the type of catalyst used in  the reactions on concentration of one component of a liquid mixture. Four catalysts were considered, and the results are given in Table 3.

Table 3: Catalyst experiment: percentage concentration from four different catalysts.

Catalyst 1

Catalyst 2

Catalyst 3

Catalyst 4

58.2

56.3

50.1

52.9

57.2

54.5

54.2

49.9

58.4

57.0

55.4

50.0

55.8

55.3

51.7

54.9

(a)  [10 marks] Complete the ANOVA Table 4, comparing a unit-treatment model to the null model. Using the table, test the hypothesis of no effect of catalyst at the 5% level.

Table 4: Catalyst experiment: ANOVA table

Source

Degrees of freedom

Sum of squares

Mean square

F-ratio

Treatment

Residual

34.562

-

Total

-

-

(b)  [10 marks] Test all pairwise differences at an exact experiment-wise level of 5%.

(c)  [5 marks] Test the null hypothesis

H0  : τ1 + τ2 = τ3 + τ4 ,

against the alternative

H0  : τ1 + τ2 τ3 + τ4

at the 5% level, where τi  is the effect of the ith catalyst.

You may find the following quantities from R useful.

qf(0.95, 3, 12)

## [1] 3.49

qt(0.975, 12)

## [1] 2.18

qt(1 - 0.025 / 6, 12)

## [1] 3.15

qtukey(0.95, 4, 12)

## [1] 4.2

3.   [25 marks]

In an experiment to compare t treatments, it is antcipated that the variance of the response may change with the treatment. To account for this, the model

yij  = µ + τi + εij ,   εij  ~ N(0,σi(2)) ,   i = 1, . . . , t, j = 1, . . . , ni ,     (1)

is proposed, with all random errors assumed independent and the experiment consisting of runs in total. Compared to the usual linear model for a completely randomised design, the background variance σi(2) is allowed to vary with treatment.

(a)  [10 marks] Under model (1), show that the estimator

is unbiased for treatment contrast cT τ and has variance

(b)  [15 marks] Assuming t = 3 and σ 1(2) = σ2(2) = 2σ3(2), find an (approximate) optimal

allocation of n = 30 units to the three treatments that leads to minimum average variance for the following two sets of contrasts.

(i) Pairwise differences:

cT = (1, -1, 0),

cT = (1, 0, -1),

cT = (0, 1, -1).

(ii) Linear and quadratic contrasts:

cT = (-1, 0, 1),

cT = (-1, 2, -1).

4.   [25 marks]

(a)  [5 marks] Show it is not possible to construct a balanced incomplete block

design (BIBD) with t = 8 treatments in b = 12 blocks of size k = 4 with each treatment replicated r = 6 times.

(b)  [10 marks] Find the smallest BIBD possible for t = 8 treatments in blocks of size k = 4. What values of b and r does your design have?

(c)  [10 marks] Now find a larger design with b = 70 blocks. For this design, what   are the values for r and λ, the number of times each pair of treatments occur     together? What is the efficiency of the design you found in part (b) compared to this larger design for estimating a pairwise treatment difference? Compare this  efficiency to the difference in size between the two designs.

5.   [25 marks]

(a)  [5 marks] Show it is not possible to construct a balanced incomplete block

design (BIBD) with t = 8 treatments in b = 12 blocks of size k = 4 with each treatment replicated r = 6 times.

(b)  [10 marks] Find the smallest BIBD possible for t = 8 treatments in blocks of size k = 4. What values of b and r does your design have?

(c)  [10 marks] The complement of a BIBD with t treatments, b blocks of size r and treatments occuring together in λ blocks is a design with b blocks, each containing the t - k treatments not included in the corresponding block of the BIBD. Show this complement design is also a BIBD and state the number of times each treatment is replicated and the value of λ . You may assume that b ≥ 2r in the original design.

6.    [25 marks]

(a)  [10 marks] A factorial experiment with three factors, A, B and C each at two

levels, is to be carried out. Two batches of experimental units are available, each containing four units. Write down the treatment combinations from the block design that confounds the highest order interaction with blocks, and use this example to explain the meaning of confounding.

(b)  [5 marks] Give the partition of the degrees of freedom for the analysis of the design in part (a).

(c)  [10 marks] It has been decided to add a fourth factor, also at two levels, into the experiment described in part (a), using the same two batches of experimental units. Design an experiment that allows all four main effects to be estimated independently of two-factor interactions and blocks. Give the defining relation of your design, the full aliasing scheme and indicate which factorial effects are confounded with blocks.

7.    [25 marks]

A 26 factorial experiment with factors A, B , C, D, E and F was performed in b = 8 blocks of size k = 8. The interactions BCDE, ACDF and ABC have been chosen to be confounded with blocks.

(a)  [5 marks] Write down all the interactions which are confounded with blocks.

(b)  [5 marks] Write down all the treatments in one block of the design.

(c) Now suppose only one block from the design can be run.

(i)  [5 marks] Write down the defining relation of the resulting fractional factorial design.

(ii)  [5 marks] Can this fraction be split into two blocks of size four without

confounding any main effects with blocks? If so, which factorial effects could you confound with blocks?

(iii)  [5 marks] Can this fraction be split into four blocks of size two without

confounding any main effects with blocks? If so, which factorial effects could you confound with blocks?

Learning objectives:

LO1 Apply theory and methods to a variety of examples.

LO2 Evaluate designs using common optimality criteria and use them to critically compare competing designs.

LO3 Explore the general theory of factorial and block designs and understand this theory sufficiently to find appropriate designs for specific applications.

LO4 Use the R statistical programming language to design and analyse common forms of experiments.

LO5 Encounter the principles of randomisation, replication and stratification, and under- stand how they apply to practical examples.

LO4 is primarily assessed via coursework.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图