代写COMP3027 Algorithm Design Assignment 3 s1 2025代做留学生SQL语言程序

COMP3027

Algorithm Design

Assignment 3

s1 2025

This assignment is due on May 7 and should be submitted on Gradescope.

All submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Integrity” policies.

As a first step go to the last page and read the section:  “Advice on how to do the assignment.”

Problem 1. (100 points)

It is the year 3241 LY. You are the CEO of Theed Palace Space Vessel Engineering Corps (known as Theed Hangars for short), a starship manufacturing company based in the city of Theed on the planet Naboo. Among your esteemed range of products is the iconic N–1 starfighter, a single–seat patrol fighter used by the Royal Naboo Security Forces (RNSF).

One thing many denizens of Naboo might not understand, is that while Theed Hangars designs and carries out the finishing touches and quality assurance passes on all of its vessels, the bulk of the actual manufacturing work is outsourced to a vast supply chain of factories scattered across the Free Trade Zone. Theed Hangars has sought to capitalize upon this era of peace and prosperity in the galaxy by seeking to maximally leverage comparative advantage, establishing a delicate web of efficient manufacturing hubs across a multitude of star systems over the course of many decades.

To spare you the details, the three major elements of the N–1 starfighter con– struction pipeline are as follows:

1. The machining of the elegant N–1 spaceframe;

2. The attachment of the twin J-type engines, as well as the Monarc C-4 hyperdrive engine;

3. The fitout of the starfighter’s flight computer, sensor suite, armament, and life support systems.

Each of the major factories in the N–1 starfighter supply chain carries out one of these three steps in its entirety. It is important that each starfighter under construc– tion undergo each of these steps in the preceding order, since each step depends crucially on the completion of the prior.  (e.g.  the calibration of the starfighter’s flight computer and control systems requires that the engines already be in place.)

Unfortunately, not all is well in the Free Trade Zone – owing to the growing unrest with the excesses of the Trade Federation, many star systems have started moving towards imposing tariffs on inter–system trade.  For a supply chain as del– icate and fragmented as that of the typical Theed Hangars vessel, the impact of tariffs would be disastrous.

As CEO of Theed Hangars, you now find yourself scrambling from system to system, hoping to influence senators and other officials and obtain exemptions from their new and often harsh tariff regimes. Across many schmoozy meetings, a com– mon theme has emerged: quotas. If you can keep inter–system inputs into the fac– tories of a given system within a given quota, then the governing parties of the respective star systems will be able to sell a narrative to their constituents of bring– ing back local manufacturing to their system, and thus will exempt Theed Hangars from the brunt of the tariffs.

While all of this schmoozing in the halls of power is all good and well, you also have some pressing issues to address within the supply chain itself: most of the manufacturing hubs were established as joint ventures with their respective star systems’ local inhabitants or with foreign investment groups.  To keep a given factory open, it must remain profitable, which means it must produce a minimum output each year.

On the other hand, the RNSF has increased its order of record for N–1 starfighter procurement quite substantially this year, to a lofty total of X spaceframes. As you continue to hop between star systems to lobby for exemptions, you at the very least need a way to check: given the exemptions you have currently managed to win, is it possible to meet the N–1 order of record while respecting the agreed–to quotas and keeping all factories profitable?

Formally, you are given the following:

 A nonnegative integer order of record for X N–1 starfighters.

 A set of star systems numbered from 1 to m.

• For each pair of star systems i, j, and each T  ∈ {frameengines}, you are given a maximum allowable inter-system quota, a non–negative integer qijT  in– dicating the maximum amount of goods of type T which are allowed to be imported from system i to system j.

 A set of n factories. For each factory i, you are given...

 Its type, Ti  ∈ {frameenginesfitout}.

 Its location, a star system Li  ∈ {1, . . . , m}.

 Its required output to remain profitable, a non–negative integer ai

 Its maximum manufacturing capacity, a non–negative integer bi.

Your task is to determine whether it is possible to assemble a supply chain schedule (i.e.  an assignment of spaceframes to frameengines, and fitout factories), for X starfighters, such that each factory has capacity to complete work on the space– frames assigned to it, all inter–system quotas are respected, and so that all factories remain open.

a) Describe the algorithm.                                                                       [30 points]

b) Prove its correctness.                                                                             [50 points]

c) Establish its time complexity.                                                              [20 points]

Advice on how to do the assignment

• Assignments should be typed and submitted as pdf (no pdf containing text as images, no handwriting).

• Start by typing your student ID at the top of the first page of your submission. Do not type your name.

 Submit only your answers to the questions. Do not copy the questions.

• You may use paragraphs, lists or itemized points, pseudocode, or any combi– nation of the above to organize your algorithm description.  Do not include actual code in your submission. (Penalties will apply!)

• When designing an algorithm or data structure, it might help you (and us) if you give a brief (1–2 sentence) description of the overall idea, and after that develop and elaborate on details. If your algorithm is stated in pseudocode or the details of the algorithm are complex, then a brief description of the overall idea is required.  Remember that an assignment in this course is an exercise in effectively presenting and communicating technical ideas (i.e.  not just "solving the problem"), and will be graded accordingly.

• Refrain from explaining "why" your algorithm does what it does in the algo– rithm description itself.  The  "why" belongs in your proof.  Your algorithm description should be a lean, complete, and unambiguous statement of just "what" your algorithm is.

• If you use pseudocode in your algorithm description, avoid adhering to any particular pseudocode "standard". Each line should endeavour to be "prosaic" in describing the intended step, with mathematical notation interspersed to denote any objects or concepts which you feel cannot be conveyed clearly in prose. Treat the pseudocode in Kleinberg and Tardos as exemplary.

• In general, try to be prosaic rather than syntactic when describing your algo– rithm. Treat this as an advantage! You do not need to describe your algorithm to a compiler or interpreter, so you can focus on phrasing your description for ease of readability by a human reader.

• Be careful with giving multiple or alternative answers.  If you give multiple answers, then we will give you marks only for "your worst answer", as this indicates how well you understood the question.

• You can use the material presented in the lectures or textbooks without prov– ing it. You do not need to write more than necessary (see comment above).

• Unless otherwise stated, we always ask about worst–case analysis, worst–case running times, etc.

• If you use further resources (books, scientific papers, the internet,...)  to for– mulate your answers, then add references to your sources and explain it in your own words. Only citing a source doesn’t show your understanding and will thus get you very few (if any) marks.  Copying from any source without reference is considered plagiarism.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图