代做COSC3000 PROJECT REPORT – SCIENTIFIC VISUALISATION代写Matlab编程

COSC3000 PROJECT REPORT - SCIENTIFIC VISUALISATION

THE FOLLOWING REPORT IS A PRELIMINARY INVESTIGATION INTO THE VISUALISATION AND ANALYSIS OF DATA PERTAINING TO THE ENERGY RATING OF AVAILABLE AND APPROVED BRANDED TELEVISIONS SOLD IN AUSTRALIA. THIS IS ACHIEVED THROUGH THE VISUALISATION OF DATA CLASSIFIED AS EITHER UNIVARIATE, BIVARIATE OR MULTIVARIATE. IT IS HOPED THAT THESE VISUALISAIONS WILL AID THE GENERAL PUBLIC TO MAKE INFORMED DECISIONS WHEN PURCHASING TELEVISIONS.

1 INTRODUCTION

The Australian Government outlines the importance of energy efficiency in households in a conscious effort to decrease global greenhouse gases.

Global greenhouse gas emissions from fossil fuel use continue to grow each year, despite attempts  to  limit them through…energy efficiency measures.   The effectiveness of  these measures has been largely offset by population growth and increasing uptake of more affordable electrical appliances.” (McGee, 2013)

In another statement by the government, it is revealed that around 33% of household energy use comes from household appliances with the television in front of the fridge/freezer for the appliance with the highest energy use (Brown, 2013).

The objective of this investigatory report is to highlight through a variety of data visualisation methodologies  and  analyses  how  various  factors  influence  the  energy  efficiency  of televisions.  The  report  aims  to  present  data  in  a  visualised  form.  targeted  towards  data- challenged consumers so that they may find meaning and understanding from the information presented to them. Factors relating to the ERL (Energy Rating Label): CEC (Comparative Energy Consumption) and star rating, and screen type (screen specifications such as screen area and size) will be the main focus of this exploration. The data will be limited to branded televisions sold in Australia which are currently available and approved in order to increase the relevance of this study.

2 REVIEW OF DATA

2.1 DATA SOURCE

The multi-dimensional dataset was sourced from the Australian Government’s online data repository available for download in .csv format with a mixture of number and text entries. Due to the official nature of the data’s collectors, it can be counted as a reliable form of real data. While information such as the timespan the data was collected was not mentioned, the dataset is updated daily with the original published date being  17/04/13. This fact proves its relevance.

A report for the Department of Climate Change and Energy Efficiency (Energy Efficient Strategies, 2011) outlines standard assumptions that should be considered with certain data fields. Section 3 details the background of how star ratings are calculated as illustrated in the following segment.

…the standard assumes a usage of 10 hours per day  in active or “on” mode, while the remainder of the time is in passive standby mode

In addition, star ratings range from 1 to 10 stars. In this case, 1 star is the worst for energy efficiency while 10 is the best.

2.2 DATA PREPARATION

To make the dataset more clear and compatible with MATLAB a number of changes were carried out. Values had to be rewritten (i.e. Republic of Korea instead of “Korea, Republic of”) for standardising and readability. All the commas that existed in the dataset had to be replaced with dashes; otherwise they were treated as delimiters and pushed the entries in the affected rows across into other columns. Values had to be standardised (i.e. Sony+SONY to SONY, Kogan+KOGAN to KOGAN) so there would be no duplicates when plotting data. Irrelevant entries were culled. Data was considered irrelevant if it was outside the scope of the investigation. Furthermore, if the data entries were blank, or had too many zeros to be visualised in a meaningful way it was removed. Data was also removed if every row in the corresponding field had a unique value because there was no meaningful way to interpret it. Of the original 3887 rows of data, only 683 remained to be visualised and analysed.

3 DATA ANALYSIS

Data  was  identified  and  split  up   into  three  distinct  groups:  univariate,  bivariate   and multivariate. The univariate visualisations were designed to be a quick visual take in of a large amount of data. The aim of bivariate visualisations was to highlight certain trends in relationships between two fields. While multivariate visualisations were designed to highlight a greater insight into the relationship between multiple fields.

3.1 UNIVARIATE

The first method of visualisation was the sorted bar chart. It was decided this was the best technique to establish the overall feel of the data. Histograms were found to not be clear with their joined  bins  especially  for  large  ranges  of  data  with  largely  varying  numbers  of occurrences. Each bin labelled with its numerical value-in an ascending order with spaces separating the bin  sections-clearly  shows  the  maximum  and  minimum  values  of  certain fields. The following figures relate to the Country of Origin, Star Rating, Brand Name and Screen Tech as these attributes are what consumers are most likely to look for when in the market for an appliance.

The data in the figures below shows a large number of single digit occurrences which was thought  odd,  considering that the television market  is  quite  large.  However,  the  original dataset did not have a field with the number of units exported. As a result, this data does not reflect the amount of units in Australia and should be taken as a generalisation of attributes from existing units.

Figure 1 Ordered occurrences for countries which export televisions to Australia

Figure 1 shows that Denmark is the country with the least exports to Australia, while China has the most. It is also interesting to note that while the majority of exports come from China, Malaysia also has a high export number, with the rest of the combined countries exporting a small amount in comparison. In addition, it was curious to see that televisions are not always constructed in the same country.

Figure 2 Ordered occurrences for television star ratings

Figure 2 surprisingly shows that the maximum star rating of the imported televisions had a higher rating of 7. It was unexpected to see that the majority of the lower energy efficiency star ratings (1, 2, 2.5, 3, 3.5, 4.5) were not frequent given the ‘reduce carbon emissions’ message by the government (McGee, 2013). More televisions  seem to be produced with energy efficiency in mind; however the dataset did not have a field on how many people purchased energy efficient televisions.

Figure 3 Ordered occurrences for television screen tech types

It can be seen in Figure 3 that the majority of imported televisions have LCD (LED) screens, while the minority has the OLED screen. It was unexpected to see that around 70% of the screen tech for imported televisions was dominated by LED.

Figure 4 Ordered occurrences for Television Brands

Figure 4 shows that well-known brands such as LG,  Samsung Electronics and Panasonic corner the brand market of televisions. It was interesting to see that so many television brands exist.

As  illustrated  in  Figures   1-4,  bar  charts   offer  an  obvious  minimum  and  maximum visualisation. However, this method is not without limitations. Ordered bar charts have no proven relationships between fields, they are only observations. For example, looking at all four figures and no other forms of visualised data, one might conclude that the majority of televisions sold from China have a star eating of 7 an LED screen and have the LG brand. Because bar charts cannot effectively illustrate relationships between fields, bivariate and multivariate data visualisations were used as supplementary information.

3.2 BIVARIATE & MULTIVARIATE

The second method towards creating a more meaningful visualisation was the scatterplot. Scatterplots were  considered  as  the  most  suitable  method  of visualisation  because  while showing the relationship of two  fields, trends were  easier to  see.  Figure  5  illustrates  an expected growth, as the diagonal size increases, the area increases also. One point of data stood out (it had a smaller screen area for a larger diagonal size) but was considered as an error due to it being a once off occurrence. A heavy clustering of data indicated that most of the TVs have screen sizes ranging from around 50cm-175cm or a screen area ranging from around 1000cm2- 11500cm2.

Figure 5 Screen size/Screen area relationship

Figure 6 Screen area/CEC relationship

The expected relationship established in Figure 5, and the clustering of screen sizes prompted a closer look at how screen size influences CEC values. There are two interesting trends identified in Figure 6. The first (red lines) shows that for the same screen area, the CEC values increase. The second (black lines) shows that as the area increases, the CEC values do as well. This result was expected, as a larger screen area usually means a larger area to power, leading to a larger amount of energy consumption, and a higher CEC value. It was interesting to see that the main cluster of plots between  100kWh/annum-1000kWh/annum corresponded to the clustering in Figure 5.This finding further cemented the idea that screen size influences CEC values. However, the one colour circle overlapping so many others, as well as the red lines trend left a confusing visualisation. The solution was to plot the same figure, but grouped by colour and marker type.

Figure 7 Screen tech grouping of screen area/CEC relationship

Figure 8 Figure 7 with trend lines

Screen tech types were decided on to be a method of grouping to establish what sort of relationship this factor had towards CEC. Figure 7 shows the results from Figure 6 grouped by colour and marker style to highlight the four screen tech types. It was interesting to see that  the  LED  televisions  were  consistently  on  the  left  side  of the  data  plots.  This  was interpreted to be that compared to LCD, OLED and Plasma screen types LED is a better performer  with  primarily   lower   CEC  values   for  increasing  screen  areas.  Plasma  was identified to be the lowest performer overall with higher levels of CEC compared to the other screen types.


Figure 9 Subplots ofCEC vs star rating vs screen size grouped by a screen tech type.

3D plotting was used as an extension of the previous figures to further highlight trends within each subsection separately (with CEC, star rating and screen size).  Most of the LED plots were in their expected quadrant around the 6-9 rating due to the trend highlighted in Figure 8. The LCD plot points were also expected (around 3-6). OLED surprisingly had most of its plots around the 9 star rating. While LED, LCD and OLED had spaced out grouping, Plasma had  the  most  of  its  points  plotted  around  4-6  rating.  This  was  interpreted  that  Plasma televisions are poor choices for energy efficiency with their higher CEC values and medium star ratings. Figure A1 in the Appendix shows a combined version of the subplots.

The  star rating  factor  was plotted  against  the  CEC  values  to highlight  any relationships between the two fields. This visualisation did not follow the expected trend: the lower the star rating, the higher the CEC value.  Instead it showed that there were higher CEC values with higher star ratings, similar to the red lines trend identified in Figure 6. Figure 10 was also replotted, and grouped by Screen Tech as another method to establish a different view from what the 3D plot showed.


Figure 10 CEC/Star rating relationship

Figure 11 Screen tech grouping of CEC/Star rating relationship

Figure 11  supports  what  was  shown  in  Figure  9  with  clear  clustering  of each  group.  In addition, it can be seen that between star ratings 1 to 6 there is an apparent decline in the CEC values. This was an expected trend (lower energy efficiency means a higher CEC value). It should be noted though that similarly to Figure 7, a higher star rating does not mean a lower CEC value which can be seen with the vertically plotted points at each star rating point. Appendix Figure A2 & A3 show Figure10 grouped by different fields (Country and Brand) both of which had no influence on energy efficiency, but were just for interest.

4 DICUSSION

4.1 CONCLUSION

While the dataset was classified as multi-dimensional at the beginning of this study, after the preparation  and  visualisation,  conclusions  were  drawn  that  this  dataset  did  not  have substantial dimensions. A contributing factor may have been a lack of knowledge and time to visualise data more effectively. Another factor could have been the limited scope of the data which was narrowed down to two main groups (ERL and screen specifications). This choice was  due  to  the  target  of  this  study  being   the  general  public  and  as  a  result  more comprehensive visualisation methods were not considered. Another reason could be that the data provided  from  the  government  site  was  not  meant  for  in  depth  analysis.  From  the visualisations  that  were  conducted,  the  following  points  summarises  the  information gathered.

●   Multiple visualisations of the same or similar data did not shed new information but confirmed original suppositions.

●   The screen area and diagonal size of televisions are related (the bigger size the size, the bigger the area).

●   Plasma TVs generally have larger CEC values with larger screen areas, while LED televisions have smaller CEC values with larger screen areas.

●   Plasma TVs generally have a smaller spread across lower to medium star ratings; with LED TVs generally having a larger spread across medium to high star ratings.

In conclusion, an LED television with a screen area of 20000cm2  can have a star rating of 9 and  expend  around1000kWh/annum,  while  a  Plasma  TV  with  a  screen  area  of  around 20000cm2 can have a star rating of 4 and expend around 2000kWh/annum. If nothing else, this study has highlighted that certain screen techs have higher energy efficiency than others and that a higher star rating or smaller screen area does not necessarily mean a lower CEC level.

5 REFERENCES

Brown, J. (2013). Home entertainment and office equipment. Retrieved from Your Home:

http://www.yourhome.gov.au/energy/home-entertainment-and-office-equipment

Energy Efficient Strategies. (2011, 06 01). Tracking the Efficieny of Televisions. Retrieved from Energy Rating Australian Government Web Site:

http://www.energyrating.gov.au/wp-

content/uploads/Energy_Rating_Documents/Library/Home_Entertainment/Television s/Tracking-the-Efficiency-of-Televisions-final-v3.pdf

McGee, C. (2013). Energy. Retrieved from Your Home: http://www.yourhome.gov.au/energy



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图