代做Statistical Learning (STAT3040) Final Project - Semester 1, 2025

Statistical Learning (STAT3040) Final Project - Semester 1, 2025

INSTRUCTIONS:

1.  The project must be typed  (not handwritten).   You should produce a reproducible document through Quarto in RStudio [https://rmarkdown.rstudio.com] for the project. The report should be no longer than 16 A4 pages [single sided] with a font size no smaller than 11 point. This does not include an appendix.

2.  The project due date is listed on the Wattle (Turn-it-in) site.  Upload the project through Wattle using Turn-it-in. You should submit your project in three different parts. Note that there are three tabs when submitting to Turnitin.

(a)  A pdf file or Word file of your report (this will likely include important R code to highlight what you have done).

(b)  A ‘.qmd’ file [a quarto file].

(c)  A ‘.r’ file [provide all the R code from the ‘.qmd’ and any additional R code used that was done outside of the ‘.qmd’ file.]

To get the ‘.r’ file from an ‘.qmd’ file use:

>  library(knitr)

>  purl("xxx.qmd")

3. When putting together your report,  write clearly  and succinctly.   Make sure to utilise ideas from throughout the course.  Use appropriate graphs, tables, mathematics, and code to aid in describing your point or thinking process.  Do not just  “print”  a set of results.  Every result should be discussed and have a reason for being presented. No points will be awarded unless you clearly discuss what you are doing.

4. As this is a final project you may not discuss the project (questions, solutions, code, etc.)  with  your  classmates or  other individuals. You can discuss  these  with  me or your tutor during our consultation times.   You must independently write your own solutions. This includes all computer code, written language, and mathematics. Please see the university resources on Academic Integrity https://www.anu.edu.au/ students/academic-skills/academic-integrity for more details. For this assignment, you do not have to cite material from either of the two textbooks or class slides.  Any other material should be appropriately cited, including websites. You must also cite any use of Artificial Intelligence  (AI). Additionally provide a single paragraph discussing your use of AI for the assignment.

5.  No late projects will be accepted.  Note that this final project is considered similar to a final exam.

6. You may post questions to the discussion board, however please let myself or Mr. Zheng Xu answer the questions.

7. Have fun with the exploration!

The project consists of analysing and statistically modelling data on U.S. medical insurance claims over a several year period.  Beyond the prediction competition, you should determine and discuss important co- variates (statistically and scientifically) and also appropriately account for and discuss uncertainty.

Data fields:

claim (Y1 ) - claims in USD.

comp (Y2 ) - medical complications (1 = yes, 0 = no).

•  age - in years.

proc - number of medical procedures (Low, Medium, High).

drugs - number of prescribed drugs the individual is taking.

emerg - number of emergency room visits.

comorb - number of comorbidities.

duration - number of days spent hospitalized.

The project should be written as report. Within the report there will be two data modelling and prediction components. Each one of these is described below. For each of the two components, you should consider at least 5 different classes of models/algorithms. Each of the models should be clearly outlined and compared (possible items to consider: k-fold cross-validation, uncertainty, predictive rank, etc). Also outline, discuss, and compare several naive predictions.  Your best predictive model for each of the two components should be discussed in terms of statistically and scientifically important covariates.  Additionally you should discuss the limitations.  If you feel your best predictive model is not the best model for discussing the relationship between the covariates and a response, you may discuss another model (or combination of models) as well.

Modeling Components:

1. claims:  Based on any of the other variables in the training data, build models to predict and understand claims.  The criterion for the predictions is Mean Squared Error.  Make sure that all predictions are justified by a model. If a perfect score (or even top 10% score) is achieved without justification, a high penalty will be applied.

The private link for the competition (which should not be shared outside of the class) is:

https://www.kaggle.com/t/f837aa93ce3c46bbb41e8537aec64811

2. comp:  Based on any of the other variables in the training data, build models to predict and understand the classification of comp. The criterion for the predictions is the Correct Classification Rate. Make sure that all predictions are justified by a model. If a perfect score (or even top 10% score) is achieved without justification, a high penalty will be applied.

The private link for the competition (which should not be shared outside of the class) is:

https://www.kaggle.com/t/5370523fef184651b969957b8945cf10

Marking Components:

1. Introduction and conclusion/discussion sections [15 points]

2.  Exploratory data analysis [15 points]

3.  Modelling component 1 [30 points]

4.  Modelling component 2 [30 points]

5.  Top predictions [10 points] - For each of the two prediction competitions the top 10% of individuals on the Private Leaderboard (when the competition closes) will be awarded 2.5 points while the top individual will be awarded 5 points.  The predictions must be justified by a model and its discussion. Note that there is a Public Leaderboard which you are able to see and a Private Leaderboard which you cannot see until the competition closes.  The evaluation of the test data are randomly and approximately evenly split between the public and private leaderboards.

Your writing, organisation, and presentation will be considered when grading.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图