代做FEEG2002 MECHANICS, MACHINES AND VIBRATION SEMESTER 2 EXAMINATIONS 2023-24代写留学生数据结构程序

FEEG2002W1

SEMESTER 2 EXAMINATIONS 2023-24

TITLE:  MECHANICS, MACHINES AND VIBRATION

Q1

(i) In the 5-bar linkage mechanism with a suspension link that is shown in Figure 1.1, the crank AD that rotates about fixed axis A, has a pin D which slides in the straight slot of link CE. Link BC turns about joint B.

Figure 1.1 Schematic of a hydraulic excavator mechanism

Determine the mobility of this mechanism and state any assumptions you make in calculating the mobility. [5 marks]

(ii) In the crank and slotted-lever, quick-return mechanism shown in Figure 1.2, the link OA with 40 mm length rotates at a constant angular speed of 100 rad/s. A sliding link which is pin joined to OA at A, slides along the link BC and hence makes BC rotate about B, as shown in the figure:

Figure 1.2. Crank and slotted-lever, quick-return mechanism

The ground link length is 70 mm. For the position shown, i.e., when the angle of OA is 60°, calculate the angular velocity of the link BC. [16 marks]

(iii) For the same four-bar linkage mechanism in Figure 1.2:

a)   Locate all the possible instantaneous centres of velocities. [7 marks]

b)   Calculate the angular velocity of the slider, using the “angular velocity ratio” theorem. [6 marks]

TOTAL [34 MARKS]

Q2

A technician is given two identical elastic springs of stiffness k equal to 2500 Nm-1  and a single viscous damper c. The technician is asked to support a motor of mass m equal to 5 kg and cannot decide which of  the  two  configurations  shown  in   Figure  2.1  to  use.  For  any calculations take g the acceleration due to gravity to be 10 ms-2.

Figure 2.1. Mounting configurations using two identical springs, a single viscous damper and a supported mass.

(i) Mounting options and comparisons.

(a)  What is the frequency above which any motor vibration to the ground will begin to be isolated for the two configurations? [6 marks]

(b)  What will be the static deflection of the mount which gives the widest frequency range of isolation? [2 marks]

(c)  What is the value for the viscous damping constant in the two cases such that the combined loaded mount (mass

supported by the springs plus damper) has critical damping? [4 marks]

(d)  The  technician  uses  both  mount  options  and  measures equal  vibration  on  the  motor  mass  when  the   motor  is operating at 3000 rpm.  Why is the vibration level the same irrespective of the mount option chosen? Estimate the motor out of balance (mee) when the motor mass acceleration is 10g at this speed. [4 marks]

(ii) A novel mount installation

An academic proposes to use a massless bar that is pivoted at its midpoint with one bar end supporting the mass via one spring and the other bar end restrained by an identical elastic spring k as shown in Figure 2.2. One can assume that the bar is free to rotate by an angle θ and displacements are small from the equilibrium position.

Figure 2.2. Isolation comprising a massless bar and the two identical springs and the attached mass.

(a)  What are the displacements of points A and B at the bar ends in terms of the bar rotation?   Hence draw the free body diagram for the supported mass m and the massless bar from the static equilibrium position. [6 marks]

(b)  Considering the equation of motion for the bar, show that the ‘novel’ system is identical in its dynamic behaviour to one of the systems presented in part (i) when the damper is not present. [7 marks]

(c)  A single viscous damper is to be added either in parallel with the upper or lower spring.  Explain why there is no preferable position to add it. [4 marks]

TOTAL [33 MARKS]

Q3

A uniform horizontal sign of length 8L  is represented by a rigid bar supported by two vertical elastic springs each of stiffness Kv as shown in Figure 3.1 below. The bar has a mass M equal to 8PAL , where PA is the mass per unit length.  The bar has a moment of inertia J about its centre equal to 6ML2 .


Figure 3.1. A horizontal sign in its equilibrium position.

(i)

(a)  Derive expressions for the potential and kinetic energies of the system in terms of the small vertical displacement y of its centre and small rotationθ in radians about its centre. [4 marks]

(b)  Using   Lagrange’s   equations,   or   otherwise,   obtain   the equations of motion for the system in matrix form. [8 marks]

(c)  Show that the system has no rigid body modes in this plane. [3 marks]

(ii) The bar is observed to be bending when the wind is gusting and it is necessary to estimate the fundamental natural frequency treating the bar as having a bending stiffness EI.

(a) Show that the function φ(x) = W (x2  + Lx) is suitable to use in Rayleigh’s method. [2 marks]

(b)  Using Rayleigh’s method, show that the estimated fundamental natural frequency w0 , in rad/s, is given by the expression:

[11 marks]

(c)  The elastic springs have stiffness Kv equal to 40 kNm-1. The sign has a total length 8L= 8 m, mass per unit length PA equal to 10 kgm-1 and a bending stiffness EI about its neutral axis of 2 MNm-2. Evaluate the estimated fundamental natural frequency in Hz to two decimal places. [3 marks]

(d)  To avoid a resonance due to the wind loading both springs are repositioned to be at the left-hand end of the beam.

Why is this a wrong decision? [2 marks]

TOTAL [33 MARKS]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图