代写DTS307TC Reinforcement Learning Coursework 1代写留学生Python语言

DTS307TC Reinforcement Learning

Coursework - Individual Lab Report

Due:  23:59, Friday, May 9, 2025

Weight: 40%

Maximum score: 40 marks

Overview

The purpose of this assignment is to gain experience in Python programming and the design of reinforcement leaning algorithms.  You are expected to implement an RL algorithm that solves a specific environment and provide an explanation of the algorithm’s methodology. You are expected to analyse your results, including challenges and your solutions.

Learning Outcomes Assessed

A: Systematically understand the fundamental concepts and principles of reinforcement learning

B: Critically analyse real-life problem situations and expertly map them as reinforcement learning tasks.

C: Mastery of Monte Carlo Methods and Temporal Difference Learning

D: Proficiency in Deep Reinforcement Learning algorithms

Late policy

5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days

Avoid Plagiarism

• Do not submit work from other students.

• Do not share code/work with other students

• Do not use open-source code as it is or without proper reference.

Risks

• Please read the coursework instructions and requirements carefully. Not following these instructions and requirements may result in a loss of marks.

• The assignment must be submitted via Learning Mall. Only electronic submission is accepted and no hard copy submission.

• All students must download their file and check that it is viewable after submission. Documents may become corrupted during the uploading process (e.g.  due to slow internet connections). However, students are responsible for submitting a functional and correct file for assessments.

• Academic Integrity Policy is strictly followed.

Lab Report (40 marks)

The lab reports must include two labs (lab3 and lab4), incorporating your source code, analysis, and supporting evidence.  Ensure that screenshots of the outputs and activities are included.  Detailed instructions for each lab can be found in the respective lab manuals, and it is crucial that your report strictly follows these guidelines:

• Do NOT use Stable-baselines libraries or any other reinforcement learning specific libraries in your code.

• Do NOT exceed the word count limit of 3000 words for each report, reference and appendix excluded.

• Although you are allowed to use any generative AI tools to assist your work, please keep in mind

that you should be using them responsibly.  (Good use: Improve your report after writing it and always review its output to ensure that it is correct. Bad use: Copy-pasting an entire report from AI without any effort of your own. )

The distribution of marks is as follows:

• The report for Lab3: A2C [20 marks]

• The report for Lab4: PPO [20 marks]

Submission Requirements

Please prepare and submit the following documents:

• A cover page featuring your student ID.

• A zip file containing all the source codes, which should be named using your full name and student ID in the following format: CW1_Name_ID.zip

• Two PDF files that include all your responses for the 2 labs, your reports, and documentation

of your lab work.  The files should be named in the following format:  CW1_Lab3_ID.pdf and CW1_Lab4_ID.pdf

Note that the quality of the code, the clarity of your writing, and the format/style. of your report will be taken into consideration during the evaluation. The detailed rubric is outlined below.

Rubric

Lab3/Lab4 (20 marks)

criteria

marks

Code Performance (3 marks)

Code runs without errors and performs tasks as specified.

2-3

Code fails to run/have errors

0-1

Code Quality (3 marks)

Code is well-organized, includes meaningful comments, and uses appropriate variable names.

2-3

Code is poorly-organized, fail to include meaningful comments.

0-1

methodology (3 mark)

Comprehensive coverage of topics with detailed explanations of approaches and methodologies.

2-3

Result analysis (3 marks)

Insightful analysis of results, including challenges faced and solutions applied.

2-3

analysis of results shows no or little insight

0-1

Report Quality (3 Mark)

Report is well-structured, formatted, and free of grammatical errors.

2-3

Evidence of Lab Work (2 Marks)

All required elements (e.g., screenshots, outputs) are included and correct.

1-2

Fail to include all required elements

0-1

Lab Work Quality (3 marks)

Clear documentation and captions for included evidence, explaining relevance and importance.

2-3

Fail to correctly document the evidence.

0-1

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图