代做Fundamentals of Machine Learning (CS-UA 473) Spring Semester 2025代写留学生Python语言

Sittyba

Fundamentals of Machine Learning (CS-UA 473)

Spring Semester 2025

§0.0  Purpose,  design  & philosophy  (PDP): As  data and  computational  resources become ever more abundant,  the  ability  to  leverage  both   has  an  increasingly  transformational  impact  on  economy, society and civilization, from prediction to generative AI. “Machine Learning” is an umbrella term for the  algorithms,  tools  and  approaches  that  drive  this  development.  This  class  is  a  survey  course intended to give an overview of all major flavors of Machine Learning that are in common use in the first quarter of the 21st century. Importantly, we will place a particular emphasis on understanding the foundations that machine learning algorithms rest on, as we enter the 4th  age of human development.     The ultimate purpose of this class is for you to be able to apply these fundamental machine learning approaches to solve real world problems both with confidence and competence.

§1.0 Instructor:           Pascal Wallisch, PhD [teaches the lecture] Office:                             60 Fifth Avenue, Room 210

Phone:                            (212) 998-8430

Email:                           intro2MLnyu@gmail.com

Office hours:                Tu  2.15-3.15 pm (Walk-ins welcome, first come, first serve - take a fox stick)

We 1.00-2.00 pm (Walk-ins welcome, first come, first serve - take a fox stick) Th  3.00-4.00 pm (Walk-ins welcome, first come, first serve - take a fox stick)

§1.1 Teaching Assistants (email:[email protected]):

Course assistant [teaches the lab]: Umang Sharma. OH: Thu 12.30-1.30pm in 60 5th Ave, Room 402

Tutor [teaches one on one]: Hamza Alshamy. Schedule one-on-one sessions viaCalendly

Section leader [teaches the recitations]: Zhe Zeng. OH: Fr 12.00-1.00 pm, Room 340 in 60 5th Ave

Graders [grade assignments]: Several, anonymous, no contact (teaching vs. grading firewall)

§1.2 Lecture times:    Mo & We 11:00 am - 12:15 pm

§1.3 Lecture space:    GCASL, C95 mirrored inhttps://nyu.zoom.us/j/93881706252

§1.4  Session content: There are  3 kinds of sessions per week.  On  Monday,  lectures introduce new course  content  each  week,  focusing  on  high  level  goals,  concepts  and  algorithms.  (Usually)  on Wednesday, the lab focuses on the practical implementation of the lecture content in code, using real and  synthetic  data.  On  Friday,  the  recitation  section  focuses  on  implementation  and  practice  of course  materials.  Sometimes,  we  will  also  feature  guest  speakers  who  will  provide  an  industry perspective on class concepts.

§1.5 Section: Fridays, 9.30 – 10.45 am and 2.00-3.15 pm in 31 Washington Pl (Silver), Room 405

§1.6 Prerequisites:    Linear Algebra, Data Structures, Probability & Statistics

§1.7 Scope:                   0 to 1. Language of instruction is Python, we index from 0.

§1.8 Materials (none of these is required, they are recommended depending on your background):

Concepts: “Pattern Recognition and Machine Learning”, by Bishop

Linear Algebra: “Linear Algebra and Learning from Data” by Strang

Math: “Mathematics for Machine Learning” by Deisenroth, Faisal & Ong

Coding: “Introduction to Machine Learning with Python” by Müller & Guido

Machine Learning overview: “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems ” by Geron

§2.0 Course grading: The total grade is calculated as follows (out of 256 points) :

A)  After Action Appraisals (12)                                          1 point / AAA               12 points total

B)  Basic course logistics quiz (1)                                       4 points / quiz             04 points total

C)  Capstone project (1)                                                         64 points/project       64 points total

D)  Deceptive AI output (1)                                                   4 points / output         04 points total

E)  Exit survey (1)                                                                    4 points / survey         04 points total

F)  Final interview & emergency skills test (1)              64 points / FIST          64 points total

G)  Groundstone survey                                                         4 points / survey        04 points total

H)  Homeworks (5)                                                                  20 points / HW          100 points total

Total                             256 points

§2.1 Grade cutoffs:

A

243-256

B+

220-229

C+

190-199

D+

150-169

F

64-127

A-

230-242

B

B-

210-219

200-209

C

C-

180-189

170-179

D

128-149

I

0-63

§2.2  Attendance  and  Participation:  You  are  responsible  for  the  material   covered   in  this   course. Consistent  attendance  is  critical,  and  whereas   all  lectures  will   be  recorded,  this   class  has  been optimized  for  live  attendance/performance.  You’ll  get  the  most  out  of  it  that  way.  To  incentivize attendance, we assign an attendance and participation grade with the AAA assignments. There are  14 weeks, and you need to complete 12 of these AAA assignments to get a full participation score. Each Wednesday, we will open up an assignment (“After Action Appraisal“ – AAA) on Brightspace. To avoid confusion, this assignment needs to be completed  BEFORE the lecture on  Monday of next week. By completing  this  reflection  and  digestion  assignment,  you  affirm  that  you   engaged  with  the  class sessions.  Slides and  code are  provided to aid  note-taking.  They  are  no substitute for attending the actual class. Basing AAA on slides instead of class attendance is an academic integrity violation.

§2.3  Homeworks:  Are  designed  to  build  skills  and  conceptual  proficiency.  There  are  no  shortcuts. Immersion is key. Thus, there are 6 assignments which are due every few weeks. Please allow yourself enough time to complete them by getting started early. Note that whereas there are 6 homeworks, we will only count the scores on the highest 5 towards your course grade.  In addition, each homework contains some extra credit questions, which counts towards the homework grade.

§2.4 Capstone project: This will be something that – hopefully – sparks joy and that ties together the skills you learned in this class. We’ll release a spec sheet what it entails at a suitable time in the course, around  April  1st.  This  project  will  allow  you  to  gauge  whether  you  enjoy  solving  problems  with Machine Learning methods and whether the class imparted the skills to do so competently.

§2.5 FIST: Whereas we anticipate – and even encourage – you to use generative AI (like chatGPT,

Github Copilot or Sparrow) to do the weekly assignments and the capstone project, you need more

than just be good at prompting the AI to succeed in this field. For instance, during a technical

interview. There are also skills someone claiming ML expertise is just expected to have on tap,

particularly in an emergency. For scalable realism, we simulate these demands in a final, cumulative    and comprehensive test, asking true/false questions with a modest attempt & incorrect (a&i) penalty. For peace of mind, you can bring any notes you want, but *all* electronic devices (computer, iPad,

phone, smartwatch, etc.) are banned. Note: As this is an in-person final that happens during finals week, be sure to make travel arrangements accordingly. If you miss it, you will get an incomplete.

§2.6 Deceptive AI output: Prompt a generative AI to say something about ML that is incorrect.

§2.7 Surveys and quizzes (B, E, G): These are low stakes assignments that will help us calibrate the class, fine-tuning them to match for your needs, wants, and competencies optimally.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图