代做ELEC3565 Electric Machines Appendix to Part 2 of Course Assignment - Induction Motors代做回归

ELEC3565 Electric Machines

Appendix to Part 2 of Course Assignment - Induction Motors

The objective of this lab is to derive the equivalent circuit parameters of an induction motor from two simple tests, namely, locked-rotor test and no-load tests; neither in- volves supplying large amounts of power to the motor.

Section 1: Overview on the induction motor

The motor investigated in this lab is a 3-phase, 50 Hz, 4-pole, cage induction machine rated for output power 2.2kW at 1420rpm.

The per-phase equivalent circuit for the induction motor is shown in Figure 1. Note that it is very similar to that of a transformer, with primary and secondary becoming stator and rotor respectively. There is one vital difference: the mechanical output power of the motor is represented by the power dissipated in the resistance Note that this resistance changes with slip, reflecting the fact that the mechanical power is a function of slip.

When the slip is zero (at synchronous speed), the load resistance becomes infinite, so there is no rotor current, and hence no output power. And when the slip is 1 (at standstill) the load resistance becomes zero, and again there is no mechanical out- put power. Note that in the later condition, however, the rotor current will be large, because the load resistance is zero (i.e. a short-circuit). The corresponding torque is of course the starting torque of the motor.

Figure 1 – The ‘per phase’ equivalent circuit of 3-phase induction motor

R1 = Stator winding resistance per phase

R2' = Referred rotor resistance per phase

X1  + X'2 = Total referred leakage reactance per phase

Xm  = Magnetising reactance per phase

Rc  = 'Core loss' resistance per phase

The equivalent circuit parameters (R1 , R'2, X1 , X'2, Rc and Xm ) are derived from two tests - the locked-rotor test and the no-load test. They are explained in the following section.

Section 2: Overview on the locked-rotor and no-load tests

Under locked-rotor condition (at S   =  1)

The part of the circuit to the right of the dotted line in Figure 1 becomes short-cir-cuited. The impedance of the remaining elements R'2 and X'2 is much lower than the impedance of parallel-connected element Xm , so the latter can be ignored and the per-phase equivalent circuit for locked-rotor test reduces to that shown in Figure 2.    The locked-rotor test of induction motor is equivalent to the test of a transformer with short-circuited secondary.

To perform. this test safely in practice, the voltage must be increased only up to the point when Iph corresponds to that of the rated value while the rotor is kept to be standstill (w   =  0). The supply voltage in this test therefore will be significantly lower than that of the rated value.

Figure 2 - Reduced equivalent circuit under locked-rotor condition

The per-phase voltage, current and power related to (R1  + R'2) and (X1  + X'2) are de-fined by following equations:

We normally will be able to measure R1 directly across the windings using multime- ter. Using the measured quantities of per-phase voltage, current and power through locked-rotor test, R'2 can be calculated from Equation (1) and with known

R1  and R2', X1  + X'2 can be calculated from Equation (2). X1  and X'2 are taken to have equal value, i.e. X1    =  X'2.

Under no-load condition

The slip (s) is very small and the impedance to the right of the dotted line in Figure 1 is much higher than that of the parallel-connected Rc  and Xm . So the per-phase equivalent circuit for no-load test reduces to that shown in Figure 3a).

Figure 3 - Reduced equivalent circuit under no-load condition

Since the currents of parallel elements Rc  and Xm  differ from the phase current Iph , the values of parameters Rc  and Xm cannot be directly obtained from measured quantities in no-load test (voltage, current and power). Nonetheless, by applying the   complex numbers notation, the parallel-connected elements Rc  and Xm   in the equiva- lent circuit for no-load test can be transformed into an equivalent series-connected elements R and X shown in Figure 3b) where Rc  and Xm   are respectively related to R and X by the following:

This transformation is derived at the end of this lab sheet.

The no-load test of induction motor is equivalent to the test of a transformer with open secondary. Normally this test is done under rated voltage level while the load torque is set to zero.

Series-connected elements (R1  + R2(I)) and (X1  + X2(I)) can now be easily calculated from vph , Iph   and pph   in similar manner as done for the locked-rotor test, i.e. by ap-plying Equations (1) and (2) in which the parameters R2(I)  and X2(I)  are replaced by R and X , respectively. Knowing the reactance X1  obtained from the locked-rotor test and the resistance R1 , the values of R and X can be determined. With the calculated and X , Rc  and Xm  can be calculated from Equations (3) and (4).

Section 4: Derivation of the Equivalent Circuit Parameters

Based on the equations given in Section 3 and the following measurements obtained from your lab:

No-load test:

R1 = Ω,

Vph = V,

Iph = A,

Pph = W.

Locked-rotor test:

Vph = V,

Iph = A,

Pph = W,

you can now derive the parameters R2(I) , X1 , X2(I) , Rc   and Xm .

Transformation of parallel elements Xm and Rc into equiva- lent series elements R and X

Applying complex numbers notation, the impedance of parallel elements Xm   and Rc is expressed as

The real and imaginary terms on the right-hand side of this expression represent re- spectively the resistive and reactive elements of the equivalent (series) impedance R + jX , i.e.,

and

These can be re-arranged so that we have and




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图