代做ELEC/XJEL3430 Digital Communications PROBLEM SET 5代写Matlab编程

ELEC/XJEL3430

Digital Communications

PROBLEM SET 5

Problem 1: Bandpass Binary Communication

Consider a binary communication system with bit rate 1/T in which equi-probable databits 0 and 1 are, respectively, encoded by the following pulse functions:

s0 (t) = A cos(wt),  0 < t < 2T / 3

, and zero elsewhere.

s1(t) = A cos(wt), T / 3 < t < T

Suppose that the communication channel is an AWGN one with two-sided spectral density N0 / 2 with no other distortions.

Suppose wT>>1.

a)    Find the energy associated with the above pulse shapes. What is the average energy per bit, Eb ?

b)   Find the inner product between s0 (t) and s1(t) .

c)    Draw s0 (t)  and s1(t) as vectors in a plane. Specify the length of each vector as well as the angle between the two vectors.

d)   Obtain and draw the optimal matched-filter receiver for this signaling.

e)    Find the bit error rate for this system and write it in terms of Eb / N0 .

f)     Using MATLAB, plot the bit error rate in part (e) as well as in part (g) of Problem 1 (on the    same plot) versus Eb / N0  in dB. Use the log scale for the vertical axis and find the value of Eb / N0  at which the BER = 1E-5. Label each graph properly.

g)    Now, let us consider the loss in the channel. Suppose our communication channel is a free-  space channel of 15 km length. At the transmitter, we use a directed antenna of 14 dB gain, and at the receiver we use a receiver antenna with 2 m2  area. Can you write the bit error rate in part (e) in terms of Eb / N0  at the transmitter.

h)    For N0  =  10-  15   Joules and T = 1 ns, plot BER vs transmitted power. How much transmission power do you need to achieve BER = 1 E -5?

Problem 2: Sending a Digitised Signal

In order to transmit a band-limited analogue signal, with a bandwidth of 10 kHz, we sample the signal at twice its Nyquist rate and quantise each sample using an 8-bit uniform quantiser. The resulted signal will then be sent using a digital communications system.

(a)  How many bits per second are being generated by the above source-sampler-quantiser?

(b) Suppose we use QPSK modulation to transmit, in real time, the above generated data. If no channel or source coding is in place, how many symbols per second do we need to send?

(c) Now consider a BPSK modulator, with a bit rate as specified by part (a) and with a carrier frequency of 1 GHz . At the receiver, we use a correlation receiver. Assume that the channel is distortion-free, but the receiver has additive white Gaussian noise with two-sided power spectral density of 1E-16 Joules. Find the minimum required energy per bit, at the receiver, as well as its corresponding power, to achieve a bit error rate less than or equal to 1E-5. Assume that Q(4.25) = 1E-5.

(d) Next, let us assume that, instead of the distortion-free channel in part (c), the channel

between the transmitter and receiver is a 40-km-long free-space channel with no fading; see Fig. 1. If we use a transmitter antenna with a 10 dB gain and a receiver antenna with an area of 1 m2, how much power is required for the transmitter in part (c)? (Hint: if the  transmitter antenna gain is 1, then, at any distance L, the transmitted power would be spread equally over a sphere with a radius of L.)

Fig. 1. The setup in part (d) and (e).

(e) Suppose the free-space channel in part (d), suffers from small-scale fading effects.

Explain what small-scale fading is and suggest one technique to mitigate it.

(f)  Repeat parts (c) and (d) for a real-time communications system that used QPSK modulation.

Problem 3: Fading Channels

Consider a binary communication system with bit rate 1/T in which equi-probable databits 0 and 1 are, respectively, encoded by the following signals:

s0 (t) = A cos(wt),  0 < t < T

s1(t) =  - A cos(wt),  0 < t < T .

The above signal will go through a fading channel with a random amplitude gain X. That is the received amplitude for bit 0 will be AX, and that of bit 1 would be -AX. Suppose X is uniformly distributed between 0 and 1.

a)    Calculate the average energy per bit at the transmitter.

b)    If X = x, for a fixed value of x, what would be the average energy per bit at the receiver?

c)    Average over X in your answer in part (b) to find the average energy per bit at the receiver.

d)   Suppose the receiver has an additive white Gaussian noise with double-sided power spectral density of N0 / 2 . Draw the correlation receiver for this system.

e)   Calculate the bit error rate for your correlation receiver. Hint: You can first find the

conditional error rate when X or thermal noise is known, and then average over that variable.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图