代写P6110: Statistical Computing with SAS Final Project调试Haskell程序

P6110: Statistical Computing with SAS

Final Project

Due: Wednesday, 04/30/2025 @5:00p EST

   This is an open source project: you may use any resources or tools, though  copying, sharing, or distributing any material is strictly prohibited. This project should be students’ original work.

•    Please submit:

o SAS code (.sas file) with detailed comments

o Document summarizing your results (.pdf)

•    Late submissions will not be accepted under any conditions.

This project deals with data collected with the intention of determining the risk factors and social determinants for cognitive impairment and early-stage dementia in 266 Philadelphia adults aged 50-64 (at recruitment). Exclusion criteria include: 1. history of cancer other than non-melanoma skin cancer, 2. presence of a clinical diagnosis of dementia, and 3. visual, hearing, or physical impairment the precludes active participation in study and precludes ability to complete study questionnaires.

Participants underwent phlebotomy, measurement of vital signs and anthropometric measures, interviews of medical history, cognitive assessments, and interviews of social determinants of health and mental/physical conditions. Given the depth of this dataset ,  investigators have posed a few potential questions.

In each prompt description, a few relevant questions have been included to help guide your analysis. You should consider these questions carefully as you prepare your results for your submission, though you are free to conduct additional analysis (which may include any other variables in the dataset) if you feel it may help inform. your primary aim.

Prompt One – Associations Between Diabetes and Cognitive Impairment in Late Middle-Aged Adults

Eleven percent of people aged 65 years and older have dementia in the United States (US), and the most common cause is Alzheimer’s disease (AD), followed by vascular dementia. One of the consistent risk factors reported for dementia, including AD and vascular dementia, is type 2 diabetes, and its antecedent, pre-diabetes. The role of type 2 diabetes and pre-diabetes in dementia is of significant public health importance because approximately 12% of the US adult population has type 2 diabetes (30.2 million) while another 33% has pre-diabetes (84.1 million). Decades of advances in AD research, particularly in AD biomarkers, have led to the dominance of brain amyloid and neurodegeneration as neuropathological constructs.

A cross-sectional study was conducted to determine the relationship between type 2 diabetes and AD neuropathology. Cognitive impairment is measured by: 1. Brain amyloid plaques, measured via PET scans, as amyloid beta (Aβ) global standardized uptake value ratio (SUVR) in each lobe and hemisphere. Mean Aβ burden should be derived as the average of these measures, and 2. Neurodegeneration, measured via  MRI as cortical thickness (mm) in signature regions of the brain related to Alzheimer’s disease.

According to the American Heart Association (AHA), diabetes categories are normal glucose tolerance (NGT; defined by hemoglobin A1c [HbA1c] < 5.7%), pre-diabetes (HbA1c 5.7 to 6.4%), and type 2 diabetes (HbA1c > 6.4%). Patients are also considered to have diabetes if they have ever received a clinical diagnosis of type 2 diabetes in the  past, regardless of current HbA1c.

Questions to Consider

1.  Primary Aim: Are there differences in mean Aβ levels among diabetes categories?

2.  Clinically, Aβ SUVR is often used to determine  positivity (Aβ >1.15). Is diabetes associated with Aβ positivity?

3.  Are there differences in physical neurodegeneration (as outlined above) among diabetes categories?

4.  Is there an association between your outcomes and continuous HbA1c?

5.  Does patient use of diabetes medication affect these associations?

6.  Are these effects consistent across other criteria for determining diabetes categories (see Metadata)?

7.  Are your effects consistent after adjusting for potential confounders? Thoughtfully consider which covariates to include in your model. In past studies, evidence has shown that age, sex, depression, low physical activity, and adiposity (high waist circumference) may be risk factors for vascular dementia.

Prompt Two – Sex and Genetic Risk Factors for Cognitive Impairment in Late Middle-Aged Adults

Eleven percent of people aged 65 years and older have dementia in the United States (US), and the most common cause is Alzheimer’s disease (AD), followed by vascular dementia. This prevalence is higher for females compared to males, the causes for which are unclear but could relate to differences in brain structure, biochemistry, function, and susceptibility to developing AD in response to genetic factors. Decades of advances in AD research, particularly in AD biomarkers, have led to the dominance of brain amyloid and neurodegeneration as neuropathological constructs.

A cross-sectional study was conducted to determine the relationship between sex/genetic risk factors and AD neuropathology. Cognitive impairment is measured by:

1. Brain amyloid plaques, measured via PET scans, as amyloid beta (Aβ) global standardized uptake value ratio (SUVR) in each lobe and hemisphere. Mean Aβ burden should be derived as the average of these measures, and 2. Neurodegeneration, measured via MRI as cortical thickness (mm) in signature regions of the brain related to Alzheimer’s disease. APOE, one the strongest genetic determinant of AD, has genotypes derived from its two SNPs (rs429358 & rs7412). The presence of an ε4 allele in an APOE genotype is considered a risk factor for AD.

Questions to Consider

1.  Primary Aim: Are there differences in mean Aβ levels between APOE-ε4 carrier statuses or sexes?

2.  Clinically, Aβ SUVR is often used to determine  positivity (Aβ >1.15). Are APOE-ε4 carrier statuses or sex associated with Aβ positivity?

3.  Are there differences in physical neurodegeneration (as outlined above) between APOE-ε4 carrier statuses or sexes?

4.  What is the distribution of APOE-ε4 between sexes? Do genetic risk factors for your outcomes behave differently between sexes?

5.  Are your effects consistent after adjusting for potential confounders? Thoughtfully consider which covariates to include in your model. In past studies, evidence has shown that age, sex, depression, low physical activity, and adiposity (high waist circumference) may be risk factors for vascular dementia.

Prompt Three - Associations Between Metabolic Deficiencies and Cognitive Impairment in Late Middle-Aged Adults

Eleven percent of people aged 65 years and older have dementia in the United States (US), and the most common cause is Alzheimer’s disease (AD), followed by vascular dementia. Metabolic syndrome (MetS) is defined as a cluster of cardiometabolic conditions, including elevated blood pressure, excess central adiposity, high levels of triglycerides, and abnormal cholesterol. MetS is a known risk factor for diabetes, cardiovascular disease, and all-cause mortality, as well as cognitive impairment, vascular dementia, and dementia due to Alzheimer’s disease.

A cross-sectional study was conducted to determine the relationship between MetS and memory function. Memory function is measured by: 1. Total words recalled on the selective reminding (SRT) test (your primary outcome), and 2. Percentile rank on other memory tests, including the C-F-L Letter Fluency test, the Category Fluency Test, and  the Color Trails tests. The presence of MetS/a MetS risk score can be derived from its  five components (see Metadata).

Questions to Consider

1.  Primary Aim: Are there differences in SRT scores by MetS status?

2.  Are there differences in other neuropsychological exams by MetS status?

3.  Are your results consistent when using MetS risk score as a continuous exposure rather than categorical MetS status?

4.  Are there different associations with your outcomes when testing your MetS   scores individually? Are some more strongly related to your primary outcome than others?

5.  Are your effects consistent after adjusting for potential confounders? Thoughtfully consider which covariates to include in your model. In past studies, evidence has shown that age, sex, education, depression, and low physical activity may be risk factors for depreciated memory function.

Submission Requirements

You will be submitting two (2) files for your project:

Manuscript Contribution (.pdf file)

This file should be a PDF containing your finished work and should contain the following elements (500-1000 words):

   Statistical Analysis: Summarize your methodological approach. What

statistical methods were considered? Which measures were used to

describe the data? What significance levels were used? What software was used to generate your results? Results are not discussed in this section.

•    Results: Description of all results. All tables and figures must be referenced in order with in-text citations. Results must clearly indicate statistic used, p-  values, and confidence intervals where appropriate. This section does not    include any discussion about the implication or importance of your findings,  just a statistical interpretation of your results.

•    Discussion: Interpretation of your results. Provide a brief explanation of the implication of your findings, whether any hypothesized effects/associations   are supported, any limitations in your methodology or results, and suggestions for future research.

   Tables & Figures (4-5, min. 2 of each): All tables and figures should be

clearly labeled in order of appearance in their own section at the end of the   manuscript, with a proper title that accurately explains their contents. Tables must be meaningful and useful (exact copies of SAS output will rarely be sufficient). You should either develop a macro that will create a nice table or construct your table by hand in Word. Submissions must include a data descriptive summary table as your Table 1 (see examples). Figures must be high quality (300 DPI) and clearly labeled. All table and figures must be manuscript. quality - you may not include any screenshots!

Code (.sas file)

This file should contain all code used to construct the elements of your submission (tables, figures, etc.), as well as all code used to generate your results. If you have used multiple code files to generate your results, please submit all code files.

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图