代做SMO202 Performance Management 2nd SEMESTER 2024/25代写数据结构语言程序

2nd SEMESTER 2024/25

Individual Assignment

BA Human Resource Management

SMO202

Performance Management

Submission Date: 23:59 18th  May, 2025

INSTRUCTIONS

In this assignment, you are expected to submit a 1800-word personal performance 

management report with an appendix detailing how you used AI in the whole performance  management process. In your report, you should explain how you set a learning goal and managed the process to achieve it. This assignment will help you learn how to set goals, manage your progress within 2 months, track and monitor your performance, collect and analyse data, suggest ways to improve, and turn all this into a clear written report. Importantly, you are encouraged to use generative AI as a collaborative partner to improve the effectiveness of your performance management. For example, generative AI can be used to brainstorm the learning  goal, set up appropriate indicators, device monitoring strategies, design measurement tools,  and provide critical insights into the data collection, data analysis and future improvement  plan. However, you are not allowed to use AI to write or draft the report itself.

This assignment has three main purposes:

1.   To give you hands-on experience managing your performance and writing about it.

2.   To help you build self-reflection and critical thinking skills by analysing your performance data and suggesting improvements.

3.   To teach you how to work with generative AI in an ethical and transparent way, a skill that will be valuable in your future career.

GUIDELINES FOR THE ASSIGNMENT:

In accordance with the assignment objectives, below is a general guideline of what sections to include in the report.

•    Performance Goals and Indicators (approx. 180 words)

In this section, you need to choose and explain a performance goal which you want to achieve this semester. The performance goal should be a learning goal aiming to improve your employability. It could be an important skill, ability, or capability that will improve your competitiveness in future labour market (e.g., interpersonal and communication skills, data analysis and HR analytics, digital and technology skills, cultural competence, adaptability and resilience, leadership, time management, project management, etc.). You can decide your goal by reflecting on your current employability or by using generative AI to identify the most important skills for the future. Whatever method you use, you must select ONE learning goal  and explain why it is important and how it could impact your future career or aspirations. Once you have chosen your performance goal, you need to create 3-5 indicators to measure your progress in this semester. These indicators should follow the SMART framework, meaning   they must be Specific, Measurable, Achievable, Relevant, and Time-bound (refer to Week 2:

Performance Goals – KPIs and OKRs). It’s essential to ensure that your indicators align with your goal – in other words, achieving the indicators should lead to achieving the goal. You are encouraged to use tables, charts, figures, or other visual methods to show the connection between your goal and indicators clearly.

•    Performance Management Process (approx. 450 words)

In this section, you are required to create a personalized performance management system  (refer to Week 3: Performance Management Systems). Start by developing a clear, step-by-step plan to achieve your goal and its indicators. Your plan should include milestones and realistic timelines, with specific deadlines for each milestone (e.g., you can use a Gantt chart to visualise the entire process). Identify all the resources you will need, such as tools, mentors, apps, learning platforms, or AI, in this section. Next, outline how you will monitor the progress—this could involve weekly self-reviews, digital trackers, or journals to record challenges and achievements. You may also integrate a feedback mechanism, such as monthly self-assessments or input from peers/mentors, to evaluate what is working and adjust your approach throughout the process. Including a reward system to maintain motivation (e.g., treating yourself to a break after hitting a milestone) is also helpful in your performance management process. You are also encouraged to use generative AI to support and refine your performance management system. Particularly, you can use generative AI to  provide feedback, offer critical insights to improve your plan, or suggest strategies to overcome potential obstacles (e.g., “How can I stay motivated if progress stalls?”). However, it is essential to adapt the AI’s suggestions to your specific context, making them practical and actionable.

•    Performance Measurement and Data Analysis (approx. 450 words)

In this section, you need to explain how you will measure progress toward your goal using  quantitative data (numbers, e.g., hours studied, tasks completed) or/and qualitative  data (descriptions, e.g., journal entries, peer feedback). You are expected to design  measurement tools that suit your specific context. For instance, you could create a ranking scale (e.g., rate daily productivity from1-5), use BARS (Behaviourally Anchored Rating Scales) to assess skill improvement, or write narrative assessments to reflect on challenges and achievements (refer to Week 5: Performance Measurement). Once you collect the data, analyse it to track trends and measure progress. Use visual tools to present your findings clearly—for example, graphs, charts (e.g., line, bar, pie, radar charts) for quantitative data, or tables, word clouds, figures, and mind maps for qualitative data. Tools like Excel, SPSS, or generative AI can help you develop data analysis strategies. However, you must interpret the data yourself:  explain what the results reveal about your progress (e.g., “Declining hours suggest burnout, so I need to adjust my schedule”). While AI can assist by summarising raw data or suggesting ways to visualise it, the final analysis and interpretation must be your original work.

•    Performance improvement plan (approx. 360 words)

In this section, you need to reflect deeply on your entire performance management process.

You are expected to provide self-reflections, specific recommendations, and a clear action  plan for future improvementCritically evaluate the shortcomings of your original performance management system. For example, think about whether unrealistic timelines, poor feedback loops, insufficient rewards affected your progress. Importantly, you need to link your findings from previous section to your improvement plan in this section, showing how data-driven insights lead to practical solutions. Your plan could include strategies for modifying, sustaining, or enhancing your performance. Ensure the improvement plan is realistic, specific, and actionable. To conclude this section, connect your improvement plan to your long-term growth as a student and individual. You are encouraged to include a comparative table to highlight the differences between your original plan and your updated improvement plan.

•    Critical Reflection on AI Collaboration (approx. 360 words)

In this section, you are required to critically analyse your experience using generative AI  during this assignment. Have a profound reflection on how AI tools supported or limited your performance. Particularly, did AI help you brainstorm goals more efficiently, or did its generic suggestions result in rigid plans? Provide specific examples of when AI was useful (e.g., quickly summarising data) and when it fell short (e.g., suggesting unrealistic strategies     that ignored your personal situation). You should also reflect on the broader strengths and   weaknesses of using AI in performance management. On a personal level, consider whether AI may reduce self-awareness by focusing too much on data and not enough on human intuition. On an organisational level, explore risks like over-reliance on AI-driven metrics, which may dehumanize the performance management process and erode employee trust. Try  to describe how your understanding of using AI in the performance management has evolved. This reflection must be entirely your original analysis—no AI-generated content is permitted in this section. Focus on what you learned in the process, not superficial praise  or criticism.

THE REQUIREMENT & MARKING:

1.    Assignments should be 1,800 words (± 10%) in length (excluding appendices, tables, figures, table of contents, and bibliography). Please state the word count on the title  page of your report.

2.    You need to submit an appendix that lists AI contributions to this assignment. In this appendix, you need to provide a transparent record of every instance where you used  generative AI during the assignment.  This documentation is essential for maintaining academic integrity and demonstrating your ability to use AI thoughtfully and responsibly. Failure to disclose AI contributions may result in penalties. You can download the AI contribution template from the Learning Mall page.

3.    The   assignment   should   be  a  double-spaced  report  in  English   (1-inch/2.54cm margins, Times New Roman font, size 12). A reference list with all sources you cited in your report  should be  generated. Please use the APA  of referencing  and citation.

4.    This individual assignment is worth 40% of your final grade. They will be graded

according to the marking descriptors, with the specific percentage in each section shown as below:

 Performance Goal and Indicators: 10%

 Performance Management Process: 25%

 Measurement Tools and Data Analysis: 25%

 Performance Improvement Plan: 20%

 Critical Reflection on AI collaboration: 20%

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图