代做BMED 4501 Biophotonics (Semester 2 – Year 2024 – 2025) Homework 1代做Python程序

BMED 4501 Biophotonics

(Semester 2 – Year 2024 – 2025)

Homework 1 (Full mark 50%) (Due Date: April 30, 2025)

Before you work on this homework, please read the following:

Here we define three parameters:

D – Level of difficulty of the course content, from 1 (low) to 6 (high).

E – Level of effort you have spent on this course, from 1 (low) to 6 (high)

L – Level of understanding you have so far in the course, from 1 (low) to 6 (high).

Identify yourself in the plot shown below by locating your “own coordinate” =

**round () is to round to the closest integer;

If you are in either region I or II, please work on all the questions

If you are in either region III or IV, please work on all the questions, too.

**Remember to write down your coordinate in your submitted homework.

Question 1: (35%) Optical setup for laser pulse characterization

(a) (5%) A titanium sapphire (Ti:S) mode-lock laser delivers ultrashort laser pulses into a 200- meter long silica fiber. This laser has a center wavelength at 900 nm and a repetition rate offrep =80 MHz. The input laser pulse (hyperbolic secant pulse) being coupled into the fiber has a temporal width (FWHM) of Dt = 17 fs. Using the dispersion curve in Fig. 1, estimate the broadened pulse width at the fiber output.

Figure 1: Group velocity dispersion curve of the fiber

(b) (15%) The broadened laser pulse can be compressed back to a transform-limited pulse based  on a pair of identical diffraction gratings. The two gratings are parallel to each other and are  separated by a distance d (Fig. 2). To understand the working principle, we first consider two  overlapped monochromatic light beams (one at λ1=875 nm, another at λ2=925 nm) incident (at  an incident angle of 60o) onto the first diffraction grating with a groove density of 1800 lines/mm.

(i) Show that the m = -1 diffracted beams from the second grating at both λ1  and λ2 are separated and parallel to each other. And both beams are also parallel to the orginal incident overlapped beam. (Hint: straightforward geometry).

(ii) In this grating-pair system, a mirror is added such that the parallel diffracted beams are back-reflected to the original beam path (Fig. 2). L = 10 cm. Therefore, by calculating the round- trip path lengths of each of the two beams (i.e. at λ1  and λ2), i.e. from A to mirror, and back to A, explain why this system functions as a “pulse compressor”.

(iii) What is the required separation d in order to compress the broadened pulse in (a) back to a transform-limited pulse?

Figure 2: A diffraction grating pair

(c) (10%) Consider that this Ti:S laser delivers a laser beam output with the following characteristics:

•    Beam radius: 1 mm

•    Pulse width: 50 fs (FWHM of a Gaussian temporal intensity pulse)

•    Repetition rate: 80 MHz

•    Time average power: 1.5 W

Calculate (i) the duty cycle, (ii) the pulse energy (in mJ), (iii) the peak power of the pulse (in kW), (iv) the bandwidth (in nm), (v) the pulse energy density (J/cm2), and (vi) peak intensity of the pulse (W/cm2).

(d)  (5%) Consider you  have no photodetector which is faster enough to measure the compressed temporal pulse width (FWHM) of the Ti:S laser, one viable approach is to employ interferometry to extract  such  information.  Explain  the working  principle  of such  measurement  based  on  Michelson interferometer. (Hints (Fig. 3): you would need a movable mirror in one of the interferometer arms whereas another is fixed mirror.) Bonus of 5% will be given if you can quantify your explanation)

Figure 3 Interferometer for temporal pulse width measurement

Question 3: Hair thickness measurement (10%)

A student performed an experiment to study the light diffraction from a strand human hair. In her experiment, she launched a laser beam (with a beam diameter of 5 mm) passing through a hair fixed vertically. She observed the diffracted intensity pattern on a screen positioned at a distance far away from the hair (few meters away) (Fig. 4a).

Fig. 4a

Question 3 (Con’t)

(a) (5%) She observed that the diffraction pattern is very familiar to that generated by a single slit. Her classmate argued that the diffraction patterns generated in these two cases (i.e. hair and single slit) are indeed the same. Her classmate further explained the phenomenon by stating that the transmission functions in these two cases are “complementary” (i.e. one of them is perfectly   transparent at regions where the other is totally opaque (e.g. the slit and strip of the same width  (Fig. 4b). Explain if her classmate’s argument is correct (Hint: You might use the concept of Fourier transform).

Fig. 4b

(b) (5%) Both students further planned to make use of the diffraction pattern to measure the human hair thickness. Explain the working principle behind this measurement.

Question 4: OCT system (20%)

(a) Consider a spectral-domain OCT system using a image-sensor-based spectrometer as detection (i.e. CCD or CMOS sensors). And you are now given four different light sources(see Table 1).

(i)    (5%) From Table 1, calculate the bandwidth of each source in terms of wavelength (in nm).

(ii) (10%) Two of the light sources in Table 1 can be used for OCT imaging of skin (A1 and A2 in Fig.

5) and colon (B1 and B2 in Fig. 5). Identify the light source in each figure and explain why.

(*Note: The lines in A1 and A2 are the A-scan profiles) Hints: look carefully at the image quality differences and explain why quantitatively.

Table 1

Question 4 (Con’t)

Fig. 5

(d) (5%) It is also required to achieve real-time 3D imaging (512(x) × 512(y) × 1024(z) voxels) at a speed of 1 frame. per second, i.e. 512 x 512 A-scans in 1 second, choose the best line camera from the list shown in Table 2 and Fig. 6. You should also make your choice based on the source you choose in  (c). Explain your choice. (**x   andy are along the lateral direction whereas z is along the axial direction.)

Table 2 Four different line-cameras

Fig. 6

Question 5 (DIC and Phase contrast microscopy) (10%)

(a) (5%) Consider DIC, phase contrast and dark-field microscopy, which imaging modality can be used for visualizing neuronal network of a living rat in-vivo?

(b)  (5%) In DIC microscopy, why does the image contrast of the DIC image vary with the specimen orientation (see the figure below)? Does this effect appear in phase contrast microscopy? Why?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图