代写System Dynamics Homework 7 – Condition, Deterioration, and Shocks代做回归

System Dynamics

Homework 7

Homework 7 - Condition, Deterioration, and Shocks

Problem 1: model selection and description

We discussed in class a methodology to represent the deterioration of the condition of an inventory of assets. The inventory may have hundreds to thousands of buildings.

The structure of the model (below), follows a 2-parameter Weibull failure rate (also known as survival function).

The parameters of the Weibull (shown below), were given an interpretation in terms of maintenance and repair schedule (M&R) and retrofit operations.

where:

•   λ = lifespan = mean life span + effect of M&R quality

•   k = failure rate, a function of the major interventions such as retrofit

t = time

The CDF is

And the survival function (blue curve is)

S = 1 - F(t)

Digression about characteristics of the Weibull

When choosing parameter values in the simulation, notice that even though lambda is constant, the inflection point (i.e. location of the change of dominance of feedback loop = max value of the f(x)) also changes with k. The figures below help you see how this happens in a Weibull function for different lambdas and k’s


Figure 1: 2-parameter Weibull model with lambda = 150 and changing k. (Left) survival functions with inflection points (blue dots). (Right) density functions with inflection/max points (blue dots).

An interesting fact is that the time at which there’s a change of slope is correlated with k.

Figure 2: change of location of feedback dominance as a function ofk for lambda = 150

For other cases, with different lambda, note how the inflection point changes and  pi   → λ for increasing k.

With these observations in mind, now consider the following questions:

Questions:

•    Identify and describe both feedback loops present in the Weibull model. As shown in the figures earlier, they’re clearly divided by an inflection point (shown by blue dots) that changes as a function of k. The left (right) branch, i.e. feedback loops 1 and 2, are located to the left (right) of the blue dot. What physical interpretation this has?

•   Select one other model (e.g. 3-parameter Weibull, exponential, Lognormal, Log-logistic, Gamma, Inverse Gaussian), and update the Vensim model provided on Canvas and reinterpret the model parameters in terms of M&R and retrofit. Modify the model as you see fit to incorporate more/less complexity with respect to the Weibull model.

Present the plots to behavior and comment about how each model represents the laws of deterioration.

•   The model currently has not feedback loops. Is this realistic?

Extra 20% points: develop a physically better (yet convincing!) interpretation of the

lambda and k in terms of M&R and retrofit than that in model provided. Please include references that you use.

Question 2: interventions

A more complete deterioration model of an inventory of buildings incorporates the effect of random damages induced by shocks (hurricanes, earthquakes). This model incorporates the  following:

•    Hurricane occurrences are described with a Poisson stochastic process. Damage

severities are described with a Uniform. stochastic process. You don't need to modify any of this too variables.

•   The law of deterioration is governed by the intrinsic characteristics of the building

typology: mean life span, baseline M&R, and baseline failure rate. You don’t need to modify these variables.

•   On the other hand, the deterioration is counteracted by four mechanisms: enhanced

M&R, spasmodic retrofit schedule, reactive retrofit, and reconstruction. The enhanced   M&R are pre-disaster, the spasmodic retrofit is pre- disasters. Reactive retrofit is post-   disaster, building sturdier constructions after a disaster, and reconstruction is also post- disaster, but with the particularity that has a Delay 1. You should adjust these.

Figure 3: Complete model deterioration

The bold assumptions, as in question 1, are that:

k ∝ f(retrofit schedules)

And

λ ∝ f(maintenance and repair schedule)

Roughly,

Lambda := Lifespan = Mean Lifespan * (1 + "Enhanced M&R" + "Baseline M&R")

k := Failure Rate = 5 - (Reactive Retrofit + Spasmodic Retrofit)

•    Do you consider that it would be better to express the variables the other way around?   i.e. retrofit increases lifespan, and M&R the failure rates? If so, implement, compare the before and after and justify your final choice.

•    Develop an M&R policy which is based on the current Condition level, or damage severity, and modify the model.

•   Assign a unit cost ($) to each operation (i.e. M&R, retrofit, and reconstruction), and conduct a simple Cost/Benefit analysis of the most adequate combination of the 3 operations (leave spasmodic retrofit out) . Benefit is defined as the damage avoided (as a function of condition, for example, or degradation). Feel free to suggest options and describe your assumptions. Cost: is simply the aggregation of the interventions times the unit cost. Adopt a consistent set values for each.

•   You need to conduct a few “scenarios” of interventions, and write down the cost, benefits, and cost/benefit in a table like the one below. For example, Reconstruction intensity is a percentage of current damage, so, if damage is less because an increased  M&R, that will save costs of Reconstruction. Indicate which one is the most convenient strategy.

•   The problem is described generally, so if you think that there are missing inputs, feel free to make assumptions and list them clearly.

Scenario

M&R

Retrofit

Reconstruction

Cost

Benefit

C/B

1

2

3

4

Please submit a report and the Vensim files you create.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图