代写Smart Infrastructure Solutions: UrbanTech Case Study调试Python程序

Smart Infrastructure Solutions: UrbanTech Case Study

Case Study Overview

UrbanTech Solutions, based in Melbourne, specializes in smart infrastructure projects aimed at enhancing urban mobility, energy efficiency, and sustainability. Over the past decade, the company has collaborated with local governments and private organizations to implement projects like smart traffic systems, energy-efficient lighting, and intelligent waste management solutions.

Recently, Emma Carter, the COO of UrbanTech, has expressed interest in understanding how data analytics can optimize project planning, reduce costs, and improve stakeholder satisfaction. A dataset containing past project data—including costs, projected vs. actual timelines, efficiency metrics, funding sources, project scales, and stakeholder ratings—has been provided for analysis.

Assignment Overview

In this assignment, students will apply data analytics techniques to assess project performance, explore key trends, and derive actionable insights for UrbanTech. The assignment consists of four key components:

Part 1: Data Exploration and Preparation

- Clean the dataset by:

- Handling missing values

- Checking for inconsistencies in categorical data

- Ensuring numerical fields are formatted correctly

- Perform. an exploratory analysis by calculating summary statistics (e.g., mean, median, distribution) and identifying patterns across project types, funding sources, and performance metrics.

- Identify key attributes such as project type, location, funding source, project scale, complexity level, cost, timeline, efficiency indicators, and stakeholder ratings.

- Create at least three visualizations that highlight trends in:

- Project cost variations

- Efficiency metrics

- Stakeholder satisfaction

Part 2: Project Performance Analysis

- Compare projects based on the following performance indicators:

- Cost-effectiveness: Calculate and compare cost per unit impact across different project types.

- Timeline adherence: Compute deviations between actual and projected timelines.

- Stakeholder satisfaction: Analyze satisfaction scores in relation to project attributes.

- Environmental impact: Assess trends in environmental impact scores.

- Analyze whether funding sources and project complexity levels influence:

- Cost-effectiveness

- Timeline adherence

- Stakeholder satisfaction

- Perform calculations to identify trends in:

- Project cost variations

- Efficiency metrics

- Technology adoption rates

Part 3: Hypothesis Testing and Insights

Use statistical methods (e.g., correlation analysis, regression, t-tests) to test the following hypotheses:

1. Projects that stay within projected timelines have higher stakeholder satisfaction.

2. Smart traffic management projects yield better cost-effectiveness than other project types.

3. Larger-scale projects experience higher deviations from projected costs.

4. Government-funded projects show better adherence to projected costs and timelines.

5. Higher technology adoption scores correlate with improved environmental impact.

Additionally, based on initial analysis, define and test one additional hypothesis. Ensure the hypothesis is measurable using the dataset’s attributes and explain the rationale behind selecting it.

Part 4: Recommendations and Strategic Insights

- Summarize key findings and provide actionable recommendations, categorized into:

- Cost optimization: Suggestions for reducing cost overruns.

- Project efficiency: Methods for improving project timelines.

- Sustainability & technology adoption: Strategies to enhance environmental impact and stakeholder satisfaction.

- Discuss the implications of the findings and how UrbanTech can leverage data-driven insights to enhance project planning, efficiency, and sustainability.

Submission Requirements

- Submit a structured report (5–6 A4 pages, 1500–2000 words, excluding figures, tables, references, and appendices).

- Provide an Excel file containing the cleaned dataset, calculations, and visualizations. If using Python or R, include a CSV of the final dataset along with the code used for analysis.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图