代写STATS 2DA3 FALL 2025 ASSIGNMENT 1代写数据结构程序

STATS 2DA3 FALL 2025

ASSIGNMENT 1

1. (4 MARKS)

Visualizing 2 categorical variables;

For the mpg dataset in the ggplot2 package, perform the following tasks:

(a)  Create a Double Decker plot, displaying “drv” as a function of “class” (class should be on the x-axis). Make sure you colour the “drv” variable so that each level is a different colour.

(b) For “compact” class cars, which type of drive train is the most common?

(c) For “midsize” class cars, which type of drive train is the least common?

(d) Using ggplot make  a bar chart  (geom bar)  displaying class” .    Colour  the class” variable with respect to the “drv” variable.

2. (7 MARKS) Go to the following website,“UCI Machine Learning Repository” and select a dataset that is suitable for visual data analysis. Downloading a .csv file is recommended for ease of use. Do not use a dataset that has been used in class or in your lab.

(a)  Report the name of your dataset, the URL that you downloaded it from, and the date and time of downloading.

(b)  Produce a table of statistics for your dataset including variable names, number of observations, variable types (categorical, continuous etc).  That is, summarize what your data set “looks like”.

(c) Using your dataset, produce 2 graphs from the list below that are appropriate for your variables:

i.  a bar chart

ii.  a histogram

iii.  a double decker plot

iv.  a scatter plot

v.  a box plot

(d)  Then create an image (like we did with the Titanic dataset in lecture 3), displaying the 2 graphs in one image.  Use R code to carry this out (use R code to display your graphs side by side), do not screen grab images and combine.

3. (11 MARKS) Go to the following website,“UCI Machine Learning Repository” and select a dataset that is suitable for clustering analysis (you may not use the same dataset from question 2). Downloading a .csv file is recommended for ease of use. Do not use a dataset that has been used in class or in your lab.

(a)  Report the name of your dataset, the URL that you downloaded it from, and the date and time of downloading.

(b)  Perform. basic preprocessing where appropriate: handle missing values, normalize/scale variables if necessary etc.

(c) Implement k-means using R - Run the algorithm for three different values of k.

(d)  Produce Silhouette plots for the three different values of k.

(e)  Compare the Silhouette results across the three different k values and discuss which choice seems best.

(f)  For the value of k that you picked as the best choice, produce a table that compares the labels generated by the clustering algorithm to the true class labels.

4. (5 MARKS)

(a) Explain the goal of clustering.

(b)  Describe the k-means algorithm step by step.

(c) Identify at least two limitations of k-means clustering.

(d) Write down the objective function minimized by k-means.

Assignment Standards

Answer each question.  Do not just provide code.  Any graphs must be rendered and reproduced in the report

LATEX or the use of Markdown in R studio is recommended but not required.

Submit your assignment as one .pdf document.

All R code should be included and organized either at the end of the as- signment or inline (if using R Markdown).

The following is a guideline, just make sure your report is easily readable:

Eleven-point font (Times or similar) should be used with approx. 1.5 line spacing and margins of at least 1 inch all around.

•  Do not include a title page.  The title and your name and student number should be printed at the top of the first page.

• Various tools, including publicly available internet tools, may be used by the instructor to check the originality of submitted work.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图