代做STAT3600 Linear Statistical Analysis Chapter 1 Introduction帮做Python语言程序

DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT3600 Linear Statistical Analysis

Chapter 1 Introduction

1 Introduction

1.1   AMotivating Example (Cholesterol Data)

The following dataset records the plasma levels of total cholesterol (in mg/ml) of 24 patients with hyperlipoproteinaemia admitted to a hospital:

3.5    1.9    4.0    2.6    4.5    3.0    2.9    3.8    2.1    3.8    4.1    3.0

2.5    4.6    3.2    4.2    2.3    4.0    4.3    3.9    3.3    3.2    2.5    3.3

Figure 1(a) gives a scatterplot of the data.

Figure 1: Plasma levels of total cholesterol (in mg/ml)

Question: Predict the cholesterol level of the next patient to be admitted to the hospital with hyperlipoproteinaemia.

Intuitive answer: Use the average of the 24 observations: 3.354 (horizontal reference line in Figure 1(a)).   Observations scatter around the average but are subject to considerable fluctua- tions.

[The above is justifiable if the observations are i.i.d. for instance.  In the absence of further infor- mation, this seems to be the best we can do.]

Suppose the hospital has also collected data on the ages of the 24 patients:

46    20    52    30    57    25    28    36    22    43    57    33

22    63    40    48    28    49    52    58    29    34    24    50

Each observation (corresponding to each patient) consists of values of two variables:

(X , Y ) = (age, cholesterol level).

Figure 1(b) plots the cholesterol levels ( Y ) against ages (X ) for the dataset.  The plot shows a strong linear relationship between X and Y. It therefore seems more reliable to assume a linear function relating age and cholesterol level, and predict the next patient’s cholesterol level based on his/her age.

Figure 1(b) fits a sloped straight line to the scatterplot by the least squares method (to be discussed later). This straight line summarises the relationship between cholesterol level and age and can be used for predicting future patients’ cholesterol levels.  Compared to Figure 1(a), fluctuations ofthe 24 observations around the sloped straight line are much smaller. A function linear in age (the sloped straight line) can better account for the observed variation in cholesterol level than a simple constant function (the horizontal line).

A crucial question of interest to statisticians:

how much “better” is the “sloped straight line” model than the “horizontal line”

model?

The above example highlights the importance for data analysis of collecting data on some other variables (e.g. age) relevant to the main variable of interest (e.g. cholesterol level) in order to obtain a model which can better explain the observed variation in the main variable.

1.2 General Problem and Terminology

Typical observational or experimental studies involve the drawing of a sample of n obser- vations from a population about which inference is to be made.  In general, each observa- tion consists of measurements on a number of variables related to an individual experimen- tal/observational unit sampled from the population.

Variable of primary interest — response or dependent variable

Remaining variables — explanatory or independent variables, also known as regressors or covariates.

Example

1.  In an opinion poll, information is collected on n members sampled from a community. Each observation can be represented in the form (sex,  age,  educational  level,  ...   , opinion).

2.  In a study of property market, n recent transactions are sampled. Each observation may have the form (area, building age, facilities, location, price).

3.  A clinical trial is conducted on a sample of n patients, some receiving a new medical treatment and the rest an old treatment. Each observation may have the form.

(age, sex, past medical record, smoking behaviour, type of medical treat- ment applied, response to treatment).

4.  To study gravitational force, a physicist varies the length of a pendulum and measures its period on n separate occasions, giving n observations of the form. (pendulum length, period).

5.  An electrician wants to determine the resistance of an electrical circuit. He passes sev- eral pre-specified currents through the circuit and measures the corresponding volt- ages. Each observation may have the form. (current, voltage).

Example

Response

Explanatory

1

opinion

sex, age, educational level, etc.

2

price

area, building age, facilities, location

3

response to treatment

age, sex, past medical record, smoking behaviour, type of medical treatment applied

4

period

length of pendulum

5

voltage

current

Our objective in linear modelling is to study the relationship between explanatory and re- sponse variables based on the sample collected. Typical questions to ask include:

•  can a simple statistical model explain the relation between the response and the ex- planatory variables?

does a certain explanatory variable affect the response significantly?

can we predict a future response based on the values of the explanatory variables?

A variable may be quantitative or qualitative (or categorical) .

Quantitative variables can be measured numerically: e.g. age, income, time, temperature etc. Qualitative variables are not numerical in nature: e.g. sex, categorized age, education level, type of crime committed, style. of cuisine served in a restaurant etc.

[Earlier chapters will focus only on quantitative variables.  Later chapters will consider also qualitative explanatory variables.]

1.3 General Procedure

Practical linear modelling consists of the following phases:

1.  graphical display of observed data

scatterplot, scatterplot matrix, etc.

2.  formulation of model

are we fitting a straight line, a parabola or anything else?

•  no useful model can fit the observed data perfectly; how do we formulate a model to account for any residual discrepancies?

3.  model fitting

calculate the best estimates of the parameters in the model

“best” in the sense of what? how to calculate? by some kind of optimisation?

4.  model adequacy checking

ascertain the quality of fit

is the model adequate? should we modify our model to obtain a better fit?

• we may need to iterate the above phases many times before coming up with a satisfactory model.

5.  making inference

try to answer questions of our interest (depending on the context of the problem)

quantify confidence in our answers using statistical arguments

make suggestions, conclusions etc.

1.4 Uses and Limitations

Uses of linear models include:

data description

e.g. model equations are effective mathematical devices for summarising the observed data

parameter estimation

e.g. unknown resistance of electrical circuit is estimated by fitting a straight line to a number of current–voltage coordinate pairs and using the formula “voltage = current × resistance”

prediction and estimation

e.g. predicting future observations for planning and decision-making purposes

•  control —

e.g. adjust the setting of the explanatory variables to yield the desired response level (but this usage is possible only if causality has been confirmed between the explanatory variable and the response) .

Linear modelling identifies relationships between variables, but does NOT imply causality.

Causality must be established by further theoretical considerations. Linear modelling anal- ysis only assists in confirming, but not proving, causality.  The linear model is only an "ap- proxmation" to the true relationship between variables if there is one. It is useful because it provides a simple and effective "portrait" of the relationship.

Model equations are valid only over the range of the observed data. Extrapolating our infer- ence beyond this range risks committing serious errors.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图