代写CMPM 146 (Game AI) Summer 2025代做Python语言

CMPM 146 (Game AI)

Summer 2025

COURSE INFORMATION

This class examines the use of Artificial Intelligence (AI) in games. It covers AI technologies for search, control, and learning, while exploring a wide variety of roles that AI has played and can play in games.  We will examine the use of AI in multiple commercial games, while discussing  the  broader application of AI for character control, level design, difficulty adjustment, play testing, player tutorials, drama management, interactive narrative, novel experiences, and more.

The course requires 6 one-week long programming assignments (half done solo, half in teams of two), readings, a midterm, and a final project (done in teams of four).  Through this work, students will gain  familiarity with multiple AI paradigms and learn how selected AI techniques can be applied to improve game design, game development and game play.

My research focuses on the application of machine learning to build  novel  interactive experiences, like translating touch into lyric poetry, and on the creation of enabling technology, e.g., by extracting a rich model of affect from LLMs.  I worked for 30 years in general theories of cognition, which was the original dream of AI; brain in a box, human level capabilities for planning, problem solving, and acting in a machine.  I came to UCSC’s CM department because games are a natural customer for cognitive systems.

LEARNING OUTCOMES

By the end of this class students should be able to:

1.   identify a core set ofAI techniques relevant to game development tasks,

2.   implement and/or apply those techniques to address game development tasks,

3.   creatively employ AI techniques to accomplish a novel purpose in games, and

4.   explain how AI has been employed in a variety of existing games.

In addition, students will develop skills for:

5.   remote collaboration on design and programming tasks,

6.   defining a prototype that efficiently illustrates a novel purpose in games, and

7.   reviewing and constructively commenting on projects pursued by other students.

More broadly, students will develop an appreciation for the breadth of possible AI applications in games, which will provide them with a novel, and valuable perspective on work in game studies and in the game industry.

PREREQUISITES/COREQUISITES

Students need a basic facility with programming and data structures to complete this class. As a result, we list Computer Science 101 (or equivalent) as a prerequisite.

Experience using Python is a plus, but not required.  No prior exposure to AI is required.

Students with a design emphasis are welcome, and there will be opportunities to employ design skills in programming assignments and the final project.

REQUIRED MATERIALS, TEXTBOOKS AND TECHNOLOGY

This class has no textbook, but it makes extensive use of readings available on the web.  The readings include blogs, videos of game play, conference talks, and primary research articles.

Students will need access to a computer capable of running a zoom session, ideally with a camera input to enhance interaction in the lab sessions.

COMMUNICATION

The course activities consist of lectures, a weekly 1-hour lab session attended by the instructor and TAs, office hours, a discussion forum,  and homework assignments. All activities will be online.

Most lectures are asynchronous, some are synchronous. Students can absorb   the asynchronous lectures at their own pace, but the content is necessary for completing the weekly assignments during the first half of the class. The introductory class, the midterm review session, the final project plan review session, guest lectures, and final  project presentations are all synchronous.

The lab sessions are synchronous.  They focus on:

•   group discussion of topics suggested by class materials to deepen understanding of that content

•   Q&A regarding readings and lecture content,

•   assistance with weekly programming assignments, and

•   collaboration and constructive review of work in progress

I will hold 4 office hours each week.  I strongly encourage students to make use of office hours.  It’s one of the things I enjoy most as a professor. Also, students who inhabit office hours routinely do better in the class.

The TAs are responsible for alternate programming assignments and will hold 9 office hours during “on” weeks (for assignments they grade), and 2 office hours on “off” weeks (while the other TA is “on”).

Students can contact me, or the TAs by email outside of office hours.  It generally takes us a day to respond.

The class employs Canvas for course announcements and Q&A, and Discord as an unmonitored discussion forum.

ASSIGNMENTS & ASSESSMENT

Game AI is a project-oriented course.   The  class structure backchains from this goal.   I introduce a variety of AI techniques in the first 6 weeks of the class (via lectures, readings, and programming assignments) so students can draw on that base to select and pursue a creative project in the last 3-4 weeks.  The class requires:

•   6 one-week long programming assignments, half done solo and half in teams of two (30% of grade),

•   ~ 14 readings with Q&A (10% of grade)

•   a midterm (30% of grade),

•   a final project done in teams of four (30% of grade)

Several programming assignments and additional readings offer opportunities for extra credit.

The  asynchronous lectures present a great deal of  information about AI paradigms, algorithms, and their use in games.  Students will need to study this material to complete the weekly programming assignments.

The weekly programming assignments and final project are major course activities.   The programming  assignments  are  thought  provoking,  and  require  students  to  internalize, understand and implement/apply AI paradigms (addressing learning outcomes 1 and 2).  The final project addresses the objective to creatively employ AI in games (learning outcome 6). The two-person programming assignments and the team project both develop collaboration skills (outcome 5).

The asynchronous lectures, synchronous lab sessions, and readings support this work.  The lecture content and readings address the goals to communicate AI techniques and their use in existing games (outcomes 1 and 4). Lab discussions help students understand, implement, and creatively apply AI  techniques in games (outcomes 2 and 3), hone their design/implementation prototype  (outcome  6),  and  exercise  constructive  review  and collaboration skills (outcome 7).  The class emphases on teamwork, applications of AI, and remote interaction all mirror common game industry settings, and develop student skills requisite for job environments (learning outcome 5).

The programming assignments include a series of success tests and are graded against those standards.   Program  clarity (comments and style) play a role only when partial credit is required.   The readings employ multiple choice and short answer questions.

Final project evaluation is based on a project plan, a short final writeup, and a c. 10-minute group presentation given in the final week of class.  We provide a final project presentation template and urge students (strongly) to rehearse their talks. Chief evaluation criteria are the clarity of that presentation, the technical difficulty, and the technical achievement of the work. Peer assessments ofthose features contribute to a project’s score, as does its selection as a class top-3 favorite (and separately, a staff top-3 favorite).   Student reviews of each other’s project plans and final presentations contribute to the reviewer’s final project grade.

Students will be able to look up their grade (in progress) on Canvas at any time.  Students are welcome to discuss their grade and their work with the course staff at any time.

GRADING POLICY

The late policy for this class is designed to keep students (and their programming partners) from falling further behind as each weekly assignment is due and the next is released.

•   Unexcused late work (any category of work) receives a 20% deduction, with an additional 20% deduction each week it is late

•   No late work will be accepted in finals week

I will grant 1-day extensions only with prior discussion. Two-day extensions are exceedingly rare.

If you encounter health issues, emergencies, or similar difficulties, come talk to me. The late policy is there to prevent avoidable problems, not to create new ones.

We intend to provide one-week turnaround on programming assignments and two-week turn- around on the midterm so students will have up-to-date feedback on their work.  We provide feedback on final project plans within one week.

STUDENT HOURS FOR COURSE

Students should be aware that Game AI is a hard course.  The pace during the first 6 weeks is fast.    The lectures communicate a great deal of material (augmented by the readings), while the programming assignments have taken c. 15 hours of work per student per week in the past. The lab sessions serve as a forum for discussing the current assignment and reducing that total.  The pace decreases in the second half of the term to give students more time to collaborate on their final projects; the programming assignments end, the readings mostly end, and the lectures address topics of interest (mostly the AI in commercial games).  A few synchronous lectures feature guest speakers.   There is no final exam; that time is used for final project presentations.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图