代写STAT3600 Statistical Analysis Assignment 4代写C/C++程序

STAT3600

Statistical Analysis

Assignment 4 (submit Q4, Q5, Q7)

Deadline: 2 May, 2025

Note: (1) Numeric values should be presented in 4 decimal places. (2) Show the intermediate steps for Q4 – Q10.

1.   A rehabilitation center researcher was interested in examining the relationship between physical prior to surgery of persons undergoing corrective knee surgery and time required in physical therapy until successful rehabilitation. Patient records in the rehabilitation center were examined, and 24 male subjects ranging in age from  18 to 30 years who had undergone similar corrective knee surgery during the past year were selected for the study. The number of days (Y) required for successful completion of physical therapy and the prior physical fitness status (A: 1 = below average,  2  =  average,  3  =  above  average)  of  each  patient  are  recorded.  The  rehabilitation researcher wishes to use age of patient (X) as a concomitant variable. The data file is ‘rehabit.csv’.

(a) Read the data into ‘mydata’. Run and explain the following codes.

mydata$A<-factor(mydata$A,levels=1:3,labels=c('below','average','above'))

mydata$A<-relevel(mydata$A,ref='below')

(b) Prepare a scatter plot of the data. Does it appear that there are effects of physical fitness status on the mean number of days required for therapy? Discuss.

(c) State the regression model equivalent to covariance model according to the setting in (a). Also stat the reduced regression model for testing for treatment effects.

(d) Fit the full regression model and report the least squares estimates of the regression coefficients.

(e) Fit the reduced regression models and test for treatment effects; use α =  0.01.  State the hypotheses, decision rule and conclusion.

(f)  Estimate the mean number of days required for therapy for patients of average physical fitness and age 24 years; use a 99% confidence interval.

(g) Make all pairwise comparisons between the treatment effects; use a 95% confidence level. Comment on the comparisons.

2.   A sociologist selected a random sample of 45 adjunct professors who teach in the evening division of a large metropolitan university for a study of special problems associated with teaching in the evening division. The data collected include the amount of payment received by the  faculty member for teaching a course during the past semester. The sociologist classified the faculty members by  subject  matter  of course  (factor  A,  1  =  humanities,  2  =  social  sciences,  3  = engineering, 4 = management) and highest degree earned (factor B, 1 = bachelor, 2 = master, 3 = doctorate). The earnings per course (in thousand dollar’s, Y) are stored in ‘adjunct.txt’.

(a) Consider an ANOVA model for this case.  State the equivalent regression model; use ‘humanities’ and doctorate’ as the reference levels.

(b) Read the data into ‘mydata’. Run and apply to factor B in a similar manner.

mydata$A<-factor(mydata$A,levels=1:4,labels=c('humanities','social','engineering','management'))

mydata$A<-relevel(mydata$A,ref='humanities')

(c) Report the least squares estimates for the regression coefficient in the regression model in (a).

(d) Find the treatment means obtained, yij. by the model. Plot the treatment means. Does it appear that any factor effects are present? Explain.

(e) What is the reduced model for testing for interaction effects? Fit the reduced model and thus, test whether or not interaction effects are present by fitting the full and reduced models; use a = 0.01. State the alternatives, decision rule and conclusion. What is the p-value of the test?

(f)  State the reduced regression models for testing for subject matter and highest degree main effects, respectively, and conduct each of the tests. Use α =  .01 each time and  state the alternatives, decision rule, and conclusion. What is the p-value of each test?

(g) Based on the full model, make all pairwise comparisons between the subject matter means. Use a 95 percent (individual) confidence coefficient.

(h) Based on the full model, make all pairwise comparisons between the highest degree matter means. Use a 95 percent (individual) confidence coefficient.

3.   A consumer organization studied the effect of age and gender of automobile owner on size of cash offer (Y: in hundred dollars) for a used car by utilizing 12 persons in each of three age groups (A: 1 = young, 2 = middle, 3 = elderly) who acted as the owner of a used car. Six male (B = 1) and six female (B = 2) volunteers were used in each age group. An analyst wishes to use each dealer’s sales volume (X: in hundred thousand dollars) as a concomitant variable. The data are stored in ‘cash.txt’. Assume that covariance model is applicable.

(a) State the regression model equivalent to covariance model. Fit this full model.

(b) State the reduced regression models for testing for interaction and factor A and factor B main effects, respectively. Fit these reduced regression models.

(c) Test for interaction effects; use α = .05. State the alternatives, decision rule, and conclusion. What is the p-value of the test?

(d) Test for factor A main effects; use α= .05. State the alternatives, decision rule, and conclusion. What is the p-value of the test?

(e) Test for factor B main effects; use α= .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

(f)  For each factor, make all pairwise comparisons between the factor level main effects. Use a 90% confidence level for each comparison.

4.   Five observations of a response variable Y and a treatment A are given as follows.

A

1

2

2

3

3

Y

0

6

5

2

3

(a) Use level 3 of A as the reference level. Using the zero constraint (ii) in 7.2.1, state the regression model equivalent to an ANOVA model. State the data matrix, X, of the regression model.

(b) Calculate XTX, X TY and YTY.

(c) It is given that

Calculate the LSE of the regression coefficients.

(d) Compile the ANOVA table. Test the effects of A at the 5% level of significance. State the hypotheses, decision rule and conclusion.

(e) Conduct a T test for each of the coefficients at the 5% level of significance. Interpret the results.

(f)  Express mean Y for each level of A in terms of the parameters in (a).

(g) Express the pairwise comparisons of mean Y for the 3 levels of A in terms of the parameters in  (a).  Thus,  make  all  pairwise  comparisons  between  the  treatment  effects;  use  a  90% confidence level by the Bonferroni’s method. Thus, comment of the comparisons of the treatment effects.

5.   Six observations of Y are given for four treatments defined by two factors A and B.

A

B

1

2

1

1

0

6

2

3

6

7

(a) Use levels 2 of A and B, respectively, as the reference levels. Using the zero constraint (ii) in

7.2.1, state the regression model equivalent to a 2-way ANOVA model with interaction. State the data matrix, X, of the regression model.

(b) Calculate XTX, X TY and YTY.

(c) It is given that

Calculate the LSE of the regression coefficients.

(d) Test whether there is a regression of Y on the main effects ofA, B and their interaction at the 5% level of significance. Compile the ANOVA table, state the hypotheses, decision rule and conclusion.

(e) Express mean Y for each of the four treatments in terms of the parameters in (a).

(f)  Express the pairwise comparisons among the means for Y of the four treatments in terms of the parameters in (a). Thus, make all pairwise comparisons between among the treatments; use a 90% confidence level by the Bonferroni’s method. Thus, comment of the comparisons of the treatment effects.

6.   Refer to Q5.

(a) State the reduced model to test for the interaction effect. State the data matrix, Xr, of the regression model.

(b) It is given that

Calculate SSE for the reduced model.

(c) Test the interaction effect at the 5% level of significance by an F test. state the hypotheses, decision rule and conclusion. State the hypotheses, decision rule and conclusion.

(d) Consider a model without interaction. Test the main effects ofA and B, respectively, by an F test at the 5% level of significance. State the hypotheses, decision rule and conclusion.

7.   A randomized block design is considered. There are 4 levels of factor A and two blocks. The observations of Y are given as follows.

A

Block

1

2

3

1

1

0

10

-5

2

3

13

12

-4

(a) Use level 3 of A as the reference level. Using the zero constraint (ii) in 7.2.1. State the regression model equivalent to the block design. State the data matrix X.

(b) Calculate the LSE for the regression coefficients. It is given that

(c) Compile the ANOVA table.

(d) Test at the 5% level of significance the effect of factor A. State the hypotheses, decision rule and conclusion.

(e) Use the Bonferroni’s method at 95% confidence level, conduct a pairwise comparison ofmean Y among the three levels ofA.

8.   Five observations of a response variable Y, a treatment A and a covariate X are given as follows.

A

1

2

2

3

3

X

-1

0

1

-1

2

Y

7

8

6

4

-3

It is given that

(a) Use level 2 of A as the reference level. Using the zero constraint (ii) in 7.2.1. State the regression model equivalent to an ANCOVA model. State the data matrix X.

(b) Calculate the LSE for the regression coefficients and SSE in (a).

(c) State the reduced model for testing the effects ofA and calculate SSE for the reduced model.

(d) Test the effects ofA; use α = 0.05. State the hypotheses, decision rule and conclusion.

(e) Use the Bonferroni’s method at 90% confidence level, conduct a pairwise comparison ofmean Y among the three levels ofA.

9.   Refer to Q8. Construct a 95% confidence interval for the average of the means of Y for the values given as follows.

A

X

1

2

2

4

10. Seven observations ofa response variable Y, two treatments A and B, and a covariate X are given as follows.

A

1

1

1

2

1

2

2

2

B

1

1

2

2

2

1

2

1

X

-1

-3

3

-2

-5

1

5

4

Y

8

10

3

3

9

2

-4

-2

(a) State the regression model equivalent to ANCOVA model with interaction between A and B.

Calculate least squares estimates of the regression coefficients and SSE. It is given that

Calculate the standard errors of the regression coefficients.

(b) Test for interaction effects; use α = .05. State the alternatives, decision rule, and conclusion. What is the p-value of the test?

(c) Construct the Bonferroni 95% confidence intervals for the pairwise comparisons among all four treatments defined by A and B. Comment on the differences.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图