代做ECS7028U/P: Data Semantics – Final Coursework帮做Python编程

ECS7028U/P: Data Semantics – Final Coursework

(Mini project)

The goal of this mini project is to apply the semantic data modeling, ontology design, logic, data validation, and rule-based reasoning skills acquired through lectures and labs. This coursework is intentionally open-ended, allowing you to make your own decisions regarding the dataset you choose to work with, identify relevant data sources, and determine the most effective way to document your work. While examples and potential data sources are available on the QM+  module page, you are encouraged to explore and select data that align with your interests.

Your primary task is to define, populate, and query an ontology, incorporating both a T-Box (terminological component) and an A-Box (assertional component) on a topic of your choice. The ontology should be designed to integrate and reuse existing semantic data, ensuring interoperability with external knowledge bases. To achieve this, at least three concepts in your T- Box must be sourced from external semantic data repositories, enabling the ontology’s A-Box to be populated with real-world data.

For implementation, you will use Protégé to design the ontology and leverage Python-based semantic tools to populate it with actual data. Your final submission should include both a structured report and the corresponding code, demonstrating your methodology, design choices and reasoning processes.

You should specifically achieve the following:

Basic Task (data engineering): Define your ontology using OWL2. The T-Box must be created using Protégé and should be your own work (not an existing ontology but may import existing ontologies). Populate the knowledge base from an external semantic data repository using SPARQL 1.1 (or the 2025 update 1.2). Verify that you can also query the local ontology using SPARQL. Document your work and submit the ontology and queries.

Intermediate Task (data integration): Complete data collection as above, but your ontology should allow fusing  information  from at least two distinct external data repositories. The query to your local ontology should answer questions that cannot be  answered by either remote  knowledge bases alone. You may use semantic (typically graph structured data with an ontology) or non-semantic (e.g. dumps of data tables, CSV files etc.) sources as long as you describe your process of populating your ontology.

Advanced Task (reasoning): Use Description Logic (DL) to define as many concepts as possible with the help of SWRL rules to compensate for the limitations of the Protégé inference engines with DL. The A-Box (incl. individuals) must be created such that it demonstrates the correctness and effectiveness of the defined logic rules.

You should submit a PDF and a zip file with the following elements: Report: A PDF document describing how you constructed the ontology: you should say where you got the data from, and you should also say what difficulties you encountered and how you solved them. The document must have also a final section explaining what source code files and models are  included, and the required steps torun the code. You are expected to submit a report explaining your assignment. If you fail to submit a report with your ontology and python files, you might receive 0% as it is the only way of proving the work is yours.

Code and Ontology: The code including SPARQL queries and ontology should be submitted as a single .zip compressed file (not exceeding 50MB). In cases where a very large database is used for demonstration, your code should access the data from a remote resource instead of including the database in the submission. The zip should include at least the following elements:

A Protégé-OWL ontology (.owl file)

•    A python script. (.py) that can be used to populate the ontology from a  SPARQL endpoint.

•    Another python script. that queries the local store to demonstrate to the user that information can be easily accessed. To test the system, the user should be able to execute any arbitrary query supported by your ontology.

Further support:

This assignment is intended to be open ended and exploratory in nature. However, for illustration, examples of possible tasks could be:

•    Create and populate an ontology covering movies and cities, enabling queries such as finding movies filmed in cities with a population of less than 1 million.

•    Develop an ontology about companies, including details on location, employees, and

profits, which could be queried to identify UK-based companies with the highest profit per employee.

•    Construct an ontology focused on music, incorporating information about artists, genres, and concert venues, which could be queried to find jazz musicians who have performed in European venues with a capacity of over 5,000.

Some publicly available semantic web data sources that can be useful for this coursework are listed below:

Dbpedia (https://www.dbpedia.org/) provides an RDF version of the information available in the regular Wikipedia. It also provides an SPARQL endpoint for remote access

(https://www.dbpedia.org/resources/sparql/ )

Wikidata is a free and open knowledge base that can be read and edited by both humans and machines (https://www.wikidata.org/). Wikidata acts as central storage for

the structured data of its Wikimedia sister projects including Wikipedia, Wikivoyage,

Wiktionary, Wikisource and others, with a SPARQL end point: https://query.wikidata.org/

•    You  can  access  open  governmental  datasets  from data.gov.uk and data.gov.  In some  cases, you might need to download the dataset, as they don’t provide a SPARQL endpoint.

•    Datasets with SPARQL end points (updated in March 2025 but may include broken links):

https://www.wikidata.org/wiki/Wikidata:Lists/SPARQL_endpoints

•    A broad set of datasets from https://datahub.io/collections (some are in RDF).

•    There are additional links to resources and examples on QM+.

Marking criteria:

Basic task (60% coursework marks): Correctly designed ontology with basic taxonomy and property hierarchy (15%), correct domain and range restrictions (5%), correct and effective use of object properties (including constraints and characteristics such as functional, transitive and irreflexive), correct and effective use of data properties, logical and correct use Description Logic to define concepts (10%), Ontology population python script. and SPARQL queries (20%), justification explanation and validation of the ontological modeling decision in the report (10%). Intermediate task (20% coursework marks): Use of appropriate, diverse data sources (5%), correct mechanism to retrieve and transform. data to fit your ontology (10%), explanation of the mechanism in the report (5%). The data sources can be RDF dumps (e.g., loaded into a local database) and SPARQL end-points, and may include a non-semantic dataset you convert into  RDF locally for it to be queried.

Advanced task (20% coursework marks): Correctly working (inferencing) ontology with one of the reasoners provided with Protégé and use of SWRL rules: object and data properties and SWRL built-ins (10%). A correct A-Box with enough individuals to use with the defined logic rules, expecting majority of the relations defined by the data properties and concepts to be inferred by the engine, not hard coded (5%), correctly commented rules and explanations in the report (5%).

Fig. 1. SWRL rule examples in Protégé (using the SWRLTab plugin)

Coursework is due on QM+ in the exam period. Please check the date specified in the coursework area of the module page. Please do not be late with the coursework otherwise a late submission penalty is applied automatically. There is a final cut-off point after one week. About  four-six weeks should be sufficient to complete this coursework. All sources including the use of  tools must be referenced and acknowledged.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图