代做FIT3152 Data analytics – 2025: Assignment 2代做R编程

FIT3152 Data analytics - 2025: Assignment 2

Your task

●    The objective of this assignment is to gain familiarity with classification models using R.

●    This is an individual assignment.

Value

●    This assignment is worth 30% of your total marks for the unit.

    It has 35 marks in total.

Suggested Length

●    8 - 10 A4 pages, approximately 1,000 words (for your report) + extra pages as appendix for your R script.

●    Font size 11 or 12pt, single spacing.

Due Date

11.55pm Friday 16th  May 2025

Submission

●    Submit a single PDF file and single video presentation file on Moodle.

●    Use the naming convention: FirstnameSecondnameID.{pdf, mp4, mov etc.}

●    Turnitin will be used for similarity checking of all written submissions.

Generative AI Use

●    Statement on Generative AI required by the university: In this assessment, you must not use generative artificial intelligence (AI) to generate any materials or content in relation to the assessment task. AI must not be used  in any way for producing the assessment task which requires demonstration of individual human capacities/skills/knowledge to meet the related unit learning outcomes.

Late

Penalties

●    5% (1.75 mark) deduction per calendar day for up to one week.

●    Submissions more than 7 calendar days after the due date will receive a mark of zero (0) and no assessment feedback will be provided.

Instructions and data

The objective of this assignment is to gain familiarity with classification models using R. We want to create models to predict whether or not a particular type of crop (Oats) is being grown on farmland, based on remote sensing data containing various optical and radar features. You will be using a modified version of the Winnipeg crop mapping data, hosted by the UCI Machine Learning Archive https://archive.ics.uci.edu/dataset/525/crop+mapping+using+fused+optical+radar+data+set

There are two options for compiling your written report:

(1) You can create your report using any word processor with your R code pasted in as machine- readable text as an appendix, and save as a pdf, or

(2) As an R Markdown document that contains the R code with the discussion/text interleaved. Render this as an HTML file and save as a pdf.

Your video report should be less than 100MB in size. You may need to reduce the resolution of your original recording to achieve this. Use a standard file format such as .mp4, or mov for submission.



Creating your data set

Clear your workspace, set the number of significant digits to a sensible value. Download WinnData.csv” and create your individual data using the following code:

rm(list = ls())

set.seed(XXXXXXXX) # Your Student ID is the random seed

WD = read.csv("WinnData.csv")

WD = WD[sample(nrow(WD), 5000, replace = FALSE),]

WD = WD[,c(sort(sample(1:30,20, replace = FALSE)), 31)]

Questions (9 Marks)

1.             Explore the data: What is the proportion of “Oats” (class = 1), to “Other” (class = 0) crops? Obtain descriptions of the predictor (independent) variables – mean, standard deviations, etc. for real-valued attributes. Is there anything noteworthy in the data? Are there any attributes you need to consider omitting from your analysis? (1 Mark)

2.             Document any pre-processing required to make the data set suitable for the model fitting that follows.

3.             Divide your data into a 70% training and 30% test set by adapting the following code (written for the iris data). Use your student ID as the random seed.

set.seed(XXXXXXXX) #Student ID as random seed

train.row = sample(1:nrow(iris), 0.7*nrow(iris))

iris.train = iris[train.row,]

iris.test = iris[-train.row,]

4.            Implement a classification model using each of the following techniques. For this question

you may use each of the R functions at their default settings if suitable. (5 Marks)

•              Decision Tree

•             Naïve Bayes

•             Bagging

•             Boosting

             Random Forest

5.             Using the test data, classify each of the test cases as “Oats” (class = 1), or “Other” (class = 0). Create a confusion matrix and report the precision, recall, accuracy and F1-score of each model. (1 Mark)

6.             Using the test data, calculate the confidence of predicting “Oats” for each case and construct an ROC curve for each classifier. You should be able to plot all the curves on the same axis. Use a different colour for each classifier. Calculate the AUC for each classifier.   (1 Mark)

7.            Create a table comparing the results in Questions 5 and 6 for all classifiers. Is there a single “best” classifier? Explain your reasoning. (1 Mark)


Investigative Tasks (20 Marks)

8.             Examining each of the models, determine the most important attributes in predicting

“Oats” (class = 1), or “Other” (class = 0) . Which attributes could be omitted from the data with very little effect on performance? Give reasons. (2 Marks)

9.             Looking at relative strengths and weaknesses of each model, and consulting relevant

references, can you explain why there is a difference in performance between the models? That is, why do some of these models perform better than others on the type of data to be fitted?  (2 Marks)

10.          Starting with one of the classifiers you created in Question 4, create a classifier that is

simple enough for a person to be able to classify “Oats” (class = 1), or “Other” (class = 0)   by hand. Describe your model with either a diagram or written explanation. What factors were important in your decision? State why you chose the attributes you used. Using the test data created in Question 3, evaluate model performance using the measures you calculated for Questions 5 and 6. How does it compare to those in Question 4? (4 Marks)

11.          Create the best tree-based classifier you can. You may do this by adjusting the

parameters, and/or cross-validation of the basic models in Question 4. Show that your model is better than the others using the measures you calculated for Questions 5 and 6. Describe how you created your improved model, and why you chose that model. What factors were important in your decision? State why you chose the attributes you used. (4 Marks)

12.          Using the insights from your analysis so far, implement an Artificial Neural Network

classifier that is as good or better than those in Question 4. Describe on attributes used and data pre-processing for implementation. How does this classifier compare with the others? Can you give any reasons? (4 Marks)

13.          Fit a new classifier to the data, test and report its performance in the same way as for

previous models. You can choose a new type of classifier not covered in the course, or a  new version of any of the classifiers we have studied. As a starting point, you might refer to James et al. (2021) or look online. When writing up, state the new classifier and package used. Include a web link to the package details. Give a brief description of how your model works. Comment on the performance of your new model. (4 Marks)

Report and Video Presentation (6 Marks)

Write a brief report (suggested length 8 – 10 pages) summarizing your results. Include your R script, copied and pasted as machine readable text, as an appendix. Use commenting in your R script, where appropriate, to help a reader understand your code. Alternatively combine working, comments and reporting in R Markdown. (2 Marks)

Record a short presentation using your smart phone, Zoom, or similar method. Your presentation should be approximately 5 minutes in length and summarise your main findings, as well as describing how you conducted your research, and any assumptions made. Pay particular emphasis to your results for the investigative tasks. (Submission Hurdle and 4 Marks)

Software

It is expected that you will use R for your data analysis and graphics and tables. You are free to use any R packages you need but please document these in your report and include in your R code.

Description of the data

Attributes A01:A30

Sensing Data

Class

The target attribute. Whether the

farmland is “Oats” (class = 1), or “Other” (class = 0)

References

An Introduction to Statistical Learning with applications in R, 2nd Ed, 2021. (Springer Texts in Statistics), James, Witten, Hastie and Tibshirani. (Available on-line from the Monash Library.)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图