代写Lab3- INT 302: Image Processing代写留学生Matlab语言

Lab3- INT 302: Image Processing

Start Date: April 22th, 2025; Due Date: May 13th, 2025

Percentage of Final mark: 70%

Late Submission Policy: 5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days.

Introduction:

This assignment contains one in-class quiz and two lab tasks. The content covers image histogram,  morphological  operation and  image transform,  image  compression and decompression, and one real application (i.e, eigenfaces). The in-class quiz will take under formal invigilation. This lab assessment includes the programming code and the report. The programming code should be run successfully, and the results should be correct.  Moreover,  the  code  quality  will   also   be  considered,  such   as  efficiency, comments,  robustness.  The  report  should  answer  all  questions  in  the  tasks,  and explain them clearly. It is recommended to add some conclusions about the whole lab.

Objectives:

Through the working in this lab, the students can achieve the learning outcomes A, B, C, D and E:

l Understand the basic principles of digital image processing

l Understand the techniques used in digital image processing.

l Have  an  appreciation of the areas of applications for various image processing techniques, e.g., image enhancement, image transform, image compression and morphological operations.

l Apply relevant image processing techniques to a given problem.

l Have basic skills to develop image processing software.

Downloads:

Download the files of lab-Material.zip from the Learning Mall (actually these are three parts for one large rar file.), unzip the file into a folder Lab-Material. Now load into your Matlab workspace the file data_for_eigenfaces.mat; you will see then in your workspace the following variables:

1-    eigenfaces_blk which contains 100 eigenfaces, and each one is 450*300.

2-    employees_DB is an array containing the employees’ ID and eigenface weighting parameters.

Lab Tasks (70 marks):

Task 1 Eigenface

BackgroundSuppose you have been asked by a company to develop a software for face recognition. This software will be used by the company to check the identity of their employees, and prevent unauthorized persons from getting in.    This software needs to interface with a database containing the employee records (employees_DB). Each record contains the following information:    ID  and  Parameters  describing the face (the weights of the Eigenface representation).

1. Orthonormal basis.    (8 marks)

The variable eigenfaces_blk contains 100 eigenfaces, where you can regard each as a vector representation by row or column concatenation.

(1) Describe the definition of orthogonality. (3’)

(2) Based on your definition, verify that these eigenfaces are orthogonal. (2’)

(3) What is the orthonormal basis? Are these eigenfaces orthonormal? If they are not orthonormal, normalize them to be orthonormal as eigenfaces_blk_norm. (3’)

2. Forward transform: generating the Eigenfaces weights of a face. (14 marks)

When an image of a face is presented to the system for classification / recognition, its own weights are found by projecting the image onto the collection of eigenfaces. This provides a set of weights describing this particular face.     It means that you transform the faces in the original spatial domain to the values in the eigenfaces domain, which is called forward transform.

(1)  Describe how to get the weights on the orthogonal basis in general and explain why it can be calculated in this way. (5’)

(2) Write a  Matlab  function which generates the weights  of a face. The function should have the following declaration: (4’)

function [weights_of_face] = get_face_weights(im, eigenfaces_blk);

(3)  Use the function get_face_weights to find the weighting parameters for the image find_id.jpg.  Plot these weighting  parameters.  Compared to the  pixel  values  in original spatial domain, what do these weights represent? (5’)

3. Inverse transform.: Face generation from its “weights”. (18 marks)

(1)  Describe how to synthesis the original image from the weights on the orthogonal basis in general. (3’)

(2) Write a Matlab function which generates a face from its weights. The function should have the following declaration: (3’)

function [im] = generate_face_from_weights(weights_of_face, eigenfaces_blk)

(3)  Use the obtained weights_of_face in the task of forward transform. on the image find_id.jpg to   synthesize    the    image    of    the    face    using   the   function generate_face_from_weights. (2’)

(4) Comparing eigen-face with 2D-DCT.    Write the code to  use 2D  DCT transform on find_id.jpg and only take the first 100 weights (i.e., first 10*10 blocks, and zero for  other  weights)  to  recover  the  image.  Comments  on  using  different numbers and fill the PSNR in the following table, and show the corresponding generated faces. Comparing the recovered image of the 100 weights with the synthesized image in (3). (10’=3+5+2)

Number

10*10

20*20

30*30

40*40

50*50

PSNR

4. Application of Image transform: recognizing an employee from his/her image.

(10 marks)

To recognize someone from his (/her) face’s photo the weights of this face need to be compared against all weights in the database to find the closest match. The Euclidean  Distance  between  two  vectors  is  a  simple  approach  for  finding  two nearest neighbors; this metric could be used in this task to find the closest face in the database.

(1)     Based   on   this   tip,   describe   how   to   recognize   an   employee   by   using eighenfaces  technology  here,  then  write  a  Matlab  function  which  finds  the employee’s ID starting from his/her photo. The function should have the following declaration: (5’)

function [ID] = get_employees_ID_from_DB (im, employees_DB, eigenfaces_blk);

(2)     Find the employee’s ID of the image find_id.jpg, and write it down in your report. (2’)

(3)     Show your ideas to improve the robustness of this recognition algorithm for the following case: if the input face is with some noise (e.g., AWGN and Salt & Pepper). (3’)

Task 2 Image Compression and Decompression (20 marks)

1.    Write a function to do the two-dimensional DCT of all the 8 X 8 non-overlapping  blocks of the image im, and merge the left-top pixel of all blocks after the DCT  transformation to get a smaller image ims. Using the image “SummerPalace.bmp” as  input  image,  please  show  the  image ims here,  and  give the  comments  on  comparing it to the original input image. (8’)

2.    To convert the floating point numbers of the 2D-DCT into integer numbers, write  a function to    quantize each 8 x 8 block using the following formula:round where  bij     is the i-th row and j-th column of the 8 x 8 2D-DCT transformed block,  whereas,  qij     is the element of the quantization matrix  Qmat     (N=8, equation(1)). And  S   is a scalar value given by equation (2). (3’)

3.    Write a function to decompress  image imo, which should  invert the above two steps. (4’)

4.    Using the image “SummerPalace.bmp” as input image im in the above functions, fill the following table with different QP values in the equation (2) for the PSNR between the original input image im and the decompressed image imo. Please give the comments on this table. (5’)

QP

1

6

14

20

26

40

55

90

PSNR

[dB]

Please note that you can directly use the Matlab functions of DCT2 and IDCT2 in the above functions.

Lab Report

Write a short report which should contain a concise description of your results and observations. Include listings of the Matlab scripts that you have written. Describe each of the images that you were asked to display.

Report format: Single column; Fond size: #12, no more than 20 pages. Answer each question completely:

–      Do not attach the code at the end of the report, just put the useful code under each question

–     The  results  maybe contain some figures, please add the index and title of each figure.

Submission before 2025-5-13.

–      Electronic version to LM with a ZIP of all files

•     zip file name: INT302-Lab3-Name-studentID.zip

•     One file with same file name of ZIP File: Report ( with studentID, name, Lab title on the homepage)

•     One folder: codes and other materials. (I can run it directly)

Marking scheme

80%-100% Essentially complete and correct work.

60%-79% Shows understanding, but contains a small number of errors or gaps.

40%-59%   Clear   evidence   of   a   serious   attempt   at   the   work,   showing   some understanding, but with important gaps.

20%-39% Scrappy work, bare evidence of understanding or significant work omitted.

<20% No understanding or little real attempt made.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图