代做AD 685 Project – Spring 2025代做Python语言

AD 685 Project – Spring 2025

Instructions:

. Please complete the guided project by Fri, May 9, 11:59 PM (Via Blackboard)

. Write your answer below each question and upload a “word doc” named LastName_FirstName.doc using the link on Blackboard.

. Also, you must upload the work files from R (LastName_FirstName.prg). One for Part 1 and one for Part 2. Excel is not suitable for this project, and it will not be accepted.

This project consists of two parts:

. Part 1: Predicting Stock Returns.

. Part 2: Forecasting models for the rate of inflation.

Part 1: Predicting Stock Returns. (40p)

Data Description:

Documentation for Stock_Returns_ 1931_2002

This file contains 2 monthly data series over the 1931:1-2002:12 sample period.

.    ExReturn: Excess Returns

.    ln_DivYield: 100×ln(dividend yield). (Multiplication by 100 means the changes are interpreted as percentage points).

The data were supplied by Professor Motohiro Yogo of the University of Pennsylvania and were used in his paper with John Campbell:

.    “Efficient Tests of Stock Return Predictability,” Journal of Financial Economics, 2006.

(Double click in the window below to access the data)

Some Background

exreturn: is the excess return on a broad-based index of stock prices, called the CRSP value-weighted  index, using monthly data from 1960:M1 to 2002:M12, where “M1” denotes the first month of the year (January), “M2” denotes the second month, and so forth.

.    The monthly excess return is what you earn, in percentage terms, by purchasing a stock at the end of the previous month and selling it at the end of this month, minus what you would have earned   had you purchased a safe asset (a U.S. Treasury bill). The return on the stock includes the capital  gain (or loss) from the change in price plus any dividends you receive during the month.

Calculating k-period stock returns:


When to apply a “buy and hold” strategy:

.    If you have a reliable forecast” of future stock returns then an active “buy and hold” strategy will make you rich quickly by beating the stock market.

.    If you think that the stock market will be going up, you should buy stocks today and sell them

later, before the market turns down. Forecasts based on past values of stock returns are sometimes called momentum” forecasts: If the value of a stock rose this month, perhaps it has momentum

and will also rise next month.

.    If so, then returns will be autocorrelated, and the autoregressive model will provide useful

forecasts. You can implement a momentum-based strategy for a specific stock or for a stock index that measures the overall value of the market.

.    From another point of view, we can use autoregressive models to test a version of the efficient markets  hypothesis   (EMH).  A  strict  form  of  the  efficient  markets  hypothesis   states  that information observable to the market prior to period t should not help to predict the return during period t . If the (EMH) is false, then returns might be predictable. If so, then returns will be autocorrelated, and the autoregressive model will provide useful forecasts.

.    For example, if you want to find out if returns are predictable (even if it is just a bit), estimate the following AR(1)

Rt  = β0  + β1Rt—1  + ut+1

.    A positive β1  coefficient means momentum,” past good returns” mean higher future returns.

.    A negative β1   coefficient means “overreaction” or “mean reversion”. In this case, previous “good returns” mean lower future returns.

.    Either way, if β1  ≠ 0 , then returns will be autocorrelated, and the autoregressive model will provide useful forecasts.

Note: In all your calculations use Huber-White heteroskedasticity consistent standard errors and covariance.

a.   Repeat the calculations reported in Table 15.2, using the following regression specifications estimated over the 1960:M1–2002:M12 sample period.

AR(1) Model

rt  = β0  + β1rt—1  + et

AR(2) Model

rt  = β0  + β1rt—1  + β2rt—2  + et

AR(4) Model

rt  = β0  + β1rt—1  + β2rt—2  + β3rt—3  + β4rt—4  + et

Autoregressive Models of Monthly Excess Stock Returns, 1960:M1–2002:M12

Dependent variable: Excess returns on the CRSP value-weighted index

(1) (2)                                (3)

Specification                                     AR(1)                     AR(2) AR(4)

Regressors

Excess Ret(t-1) Std. Error

p-value

Excess Ret(t-2) Std. Error

p-value

Excess Ret(t-3) Std. Error

p-value

Excess Ret(t-4) Std. Error

p-value

Intercept

Std. Error

p-value

Adj R^2

Wald F-statistic p-value

T=

b.   Are these results consistent with the theory of efficient capital markets?

c.   Can you provide an intuition behind this result?

d.   Repeat the calculations reported in Table 15.6, using regressions estimated over the 1960:M1– 2002:M12 sample period.

Autoregressive Distributed Lag Models of Monthly Excess Stock Returns, 1960:M1–2002:M12

Dependent variable: Excess returns on the CRSP value-weighted index

(1) (2) (3)

Specification                                 ADL(1,1)                                    ADL(2,2)                                    ADL(1,1)

Eatimation Period             1960:M1–2002:M12               1960:M1–2002:M12               1960:M1–1992:M12

Regressors

Excess Ret(t-1) Std. Error

p-value

Excess Ret(t-2) Std. Error

p-value

Change_ln_DP(t-1) Std. Error

p-value

Change_ln_DP(t-2) Std. Error

p-value

ln_DP(t-1) Std. Error p-value

Intercept

Std. Error p-value

Adj R^2

F-statistic

p-value

Obs =

e.   Does the Δln(dividend yield) have any predictive power for stock returns?

f.    Does “the level of the dividend yield” have any predictive power for stock returns?

g.   Construct pseudo out-of-sample forecasts of excess returns over the 1993:M1–2002:M12 period, using the regression specifications below that begin in 1960:M1.

ADL(1, 1) specification:

ERt  = β0  + β1ERt—1 + β2ln(dividend yield)t—1  + ut

Constant Forecast: (in which the recursively estimated forecasting model includes only an intercept)

ERt  = β0  + ut

Zero Forecast: the sample RMSFEs of always forecasting excess returns to be zero.

Model RMSFE

Zero Forecast

Constant Forecast ADL(1, 1)

h.   Does the ADL(1, 1) model with the log dividend yield provide better forecasts than the zero or constant models?

Part 2 (85p)

Forecasting models for the rate of inflation - Guidelines

Go to FRED’s website (https://fred.stlouisfed.org/) and download the data for:

.    Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL) - Seasonally adjusted – Monthly Frequency – From 1947:M1 to 2017:M12

In this hands-on exercise you will construct forecasting models for the rate of inflation, based on CPIAUCSL.

For this analysis, use the sample period 1970:M01–2012:M12 (where data before 1970 should be used, as necessary, as initial values for lags in regressions).

a.

(i)         Compute the (annualized) inflation rate,

(ii)        Plot the value ofInfl from 1970:M01 through 2012:M12. Based on the plot, do you think that Infl has a stochastic trend? Explain.

b.

(i)         Compute the first twelve autocorrelations of  (Infl and ΔInfl)

(ii)        Plot the value of ΔInfl from 1970:M01 through 2012:M12. The plot should look “choppy” or jagged.”  Explain why this behavior is consistent with the first autocorrelation that you computed in part (i) for ΔInfl.

c.

(i)         Compute Run an OLS regression ofInflt  on Inflt—1 . Does knowing the inflation this month help predict the inflation next month? Explain.

(ii)        Estimate an AR(2) model for Infl. Is the AR(2) model better than an AR(1) model?

Explain.

(iii)       Estimate an AR(p) model for p = 0, …, 8. What lag length is chosen by BIC? What lag

length is chosen by AIC?

(iv)       Use the AR(2) model to predict “the level of the inflation rate” in 2013:M01—that is,

Infl2013:M01 .

d.

(i)         Use the ADF test for the regression in Equation (14.31) with two lags of ΔInfl to test for a stochastic trend in Infl.

(ii)        Is the ADF test based on Equation (14.31) preferred to the test based on Equation (14.32) for testing for stochastic trend in Infl? Explain.

(iii)       In (i) you used two lags of ΔInfl. Should you use more lags? Fewer lags? Explain.

(iv)       Based on the test you carried out in (i), does the AR model for Inf contain a unit root? Explain carefully. (Hint: Does the failure to reject a null hypothesis mean that the null hypothesis is true?)

e.   Use the QLR test with 15% trimming to test the stability of the coefficients in the AR(2) model for the inflation” Infl. Is the AR(2) model stable? Explain.

f.

(i)         Using the AR(2) model for Infl with a sample period that begins in 1970:M01, compute pseudo out-of-sample forecasts for the inflation beginning in 2005:M12 and going through 2012:M12.

(ii)        Are the pseudo out-of-sample forecasts biased?  That is, do the forecast errors have a nonzero mean?

(iii)       How large is the RMSFE of the pseudo out-of-sample forecasts? Is this consistent with

the AR(2) model for Infl estimated over the 1970:M01–2005:M12 sample period?

(iv)       There is a large outlier in 2008:Q4. Why did inflation fall so much in 2008:Q4? (Hint:

Collect some data on oil prices. What happened to oil prices during 2008?)




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图