代写ECE2191 Probability Models in Eng. Example 2代做Java语言

ECE2191

Probability Models in Eng.

Example 2

Information

This is an open-book exam.You are permitted to use lecture notes and calculators to complete the questions.

This exam consists of 7 questions.

You have 2 hours and 10 minutes to complete the exam.

The exam has the following sections:

· Section A: Essay and Composite Questions

o Answer the question in section A by entering text online in the dedicated space below each question.Note that these questions may have multiple parts and all parts should be attempted.

· Section B: Hand-written/drawn response Questions

o Answer all of the hand-written/drawn response questions in section B on your own pieces of paper.All questions in section B should be attempted.Please clearly label each blank piece of paper with your Student ID and the question number(and subpart of the question,if applicable). Please do not write your name on the paper.You will have time at the end of your exam to upload photographs of your answer sheets.

If you believe there is an error or a question is unclear,clearly state any assumptions you need to make and proceed.

Section A: Essay and Composite Questions

Question 1

We collect digital output samples from a sensor and note that some samples may be corrupted by random noise(independently).Assume that the number of noise samples that we collect over time is modelled by a Poisson random variable, with an average of 600 noise samples per minute.

Answer the following questions.Explain your results in fullby including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

1a) a)What is probability that no noise sample is collected in a 200-ms period?(3 marks)

1b) b)What is the probability of collecting no more than 2 noise samples in a 200-ms period?(3 marks)

Question 2

A biomedical engineer should choose between two sensors for use in a medical device.The lifetime of each sensor is modelled by a Gaussian random variable,where for Sensor 1,the mean is 28,000 hours  and standard deviation is 1000 hours and for Sensor 2,the mean is 24,000 hours and standard deviation is 4000 hours.Assume that the probability of the lifetime being negative is negligible.Which sensor should be chosen if the desired lifetime of the device is 30,000 hours?Include all justification,  reasoning,formulae used(in a text format)and/or calculations performed to arrive at your answer.

(Note:no marks will be given if no reasoning,formulae used and/or calculations are provided.)

The following information may be used:

Q-function values:

Section B: Hand-written/drawn response Questions

Question 3

The body temperature values of a group of patients were collected.If we model the body temperature Xin Celsius as a random variable with probability density function

a) Calculate the constanta.

b) Calculate the cumulative distribution function.

c) What is the probability that the body temperature of the patient is  or higher?

d) What is the expected value of the body temperature?

e) Knowing that  explain how the variance of the body temperature in Fahrenheit is related to the variance of the body temperature in Celsius.

Explain your results in full by including all reasoning,formulae used and/or calculations performed to arrive at your answers.(Note:no marks will be given if no reasoning,formulae used and/or calculations are provided.)

Question 4

It is the year 2025, and ECE2191 is offered to students all over the world.As a tutor of ECE2191 at a local university campus, your job this semester has been to grade the assessments of a smallcohort of local students that Monash University allocated to you.Given that the semester and exam periods are now over, you are interested in conducting some analysis regarding students' final marks. In particular,you want to find an estimate of the average final mark of ECE2191 students from all over the globe. You know that the population standard deviation (i.e., the standard deviation of the final mark of ECE2191 students from all over the world) is 10; and you can safely assume that the final marks of ECE2191 students from all over the world follow a normal distribution. Your own local students' final marks are provided below (marks are out of 100):

56, 67, 40, 62, 70, 62, 68, 67, 52, 53, 79, 60, 56, 77, 78, 70, 53, 59, 68, 64, 63, 58, 49, 66, 54, 75, 66, 64, 75, 88

a) Construct a 99%confidence interval estimate for the average final mark of ECE2191 students from all over the world.

b) Construct a 95%confidence interval estimate for the average final mark of ECE2191 students from all over the world, and discuss this 95%confidence interval estimate in comparison to the 99% confidence  interval estimate that you calculated prior.

Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations  are  provided.)

Question 5

Let X be a random variable with probability density function fx (x) and let X₁,….,Xn be a set of independent random variables each with probability density function fx (x). Then the set of random variables X₁ ,...,Xn is called a random sample of size n of X. The sample mean is defined by

Suppose that X has meanμand variance .How many samples of X should be taken if the probability that the sample mean will not deviate from the true mean μby σ/10 or greater is at least 0.95?

Include all reasoning, formulae used and/or calculations performed to arrive at your answer.

(Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 6

An engineer has 30 chips of which 11 are broken. Since she does not know which chip is broken, she randomly chooses 5 chips to test.

a) What is the sample space for the number of chosen chips which are faulty?

b) What is the probability that exactly one of the chosen chips is faulty?

c) We know that 5 of the chips are new and 25 of the chips are used (without knowing which ones are  new) and we assume that the probability of a new chip being faulty is 0.2 and the probability of a used chip being faulty is 0.4. If the randomly chosen chip is not faulty, what is the probability that it is new?

Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers.(Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 7

Consider the binary communication channel shown below in Fig. 1. Let (X,Y) be a pair of random variables, where X is the input to the channel, and Y is the output of the channel. The variable X may assume either the value 0 or the value 1.Similarly, the variable Y may  assume either the value 0 or the value 1. Because of channel noise, an input 0 may convert to an output 1, and vice versa. The channel is characterised by the channel transition probabilities po, qo, P1 and q1,as follows:

Note that 

Your employer asks you the following:

(a) Compute the joint probability mass function for (X,Y).

(b) Compute the marginal  probability mass functions of X and Y.

(c) Are X andY independent?

(d) Can you determine whether there exists a linear relationship between X and Y, and if so, quantify the relative strength of this relationship?

Provide answers to all four of your employer's questions. Justify your answers by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks willbe given if no reasoning, formulae used and/or calculations are provided.)

Fig. 1: Binary communication channel.









热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图