代做ECE2191 Probability Models in Engineering Mock Exam

ECE2191

Probability Models in Engineering

Mock Exam

Information

This is an open-book exam. You are permitted to use lecture notes and calculators to complete the questions.

This exam consists of 7 questions.

Please answer all questions.

You have 2 hours and 10 minutes to complete the exam.

The exam has the following sections:

Section A: Essay and Multipart Questions

Answer the question in section A by entering text online in the dedicated space below each

question.  Note that these questions may have multiple parts and all parts should be attempted.

When writing in text boxes:

please write fractions as a/b

please write exponents as a^(b-c) for ab-c

please use any of the following for complement of A, Ac: A', Ac or A^c

You can use any of the following notations for combination: n choose r ,   C(n,r)  or   n C r

You can use any of the following notations for Px or Px,y, etc: Px, P_x, Pxy, P_xy, P_{x,y}, You can use any of the following notations for or fx,y, etc: f_x, f_xy, f_{x,y},

For ≤ and ≥ use <= and >= or insert these characters: ≤ and

For ± write: +/- or insert this character ±

For square root of a, write sqrt(a) or sqrt{a}, or a^{1/2} or a^(1/2)

For Phi Φ function write Phi(x) or insert this character: Φ

For sigma σ write sigma or insert this character: σ

For summation of i from i=1 to n, write sum_{i=1}^{n} (i) or sum{i=1 to n} (i) or insert character Σ_{i=1}^{n} (i) or write sum of i from i=1 to n.

For approximate results write ~ or insert character

. Section B: Hand-written/drawn response Questions

Answer all of the hand-written/drawn response questions in section B on your own pieces of paper. All questions in section B should be attempted. Please clearly label each blank piece of paper with your Student ID and the question number (and subpart of the question, if applicable). Please do not write your name on the paper. You will have time at the end of your exam to upload photographs of your answer sheets.

If you believe there is an error or a question is unclear, clearly state any assumptions you need to make and proceed.

Section A: Essay and Multi part Questions

Question 1

My partner and I are one of 10 married couples at a dinner party. The 20 people are given random seats around a round table. What is the probability that I am seated next to my spouse?

Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 2

The PDF of a continuous random variable X is shown below:

The random variable Y is related to X as follows:

Answer the following questions. Explain your results in full by including all reasoning, formulae used  and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

2a) What is the possible value of a?

2b) What is the probability of event X=1?

2c) Find the probability mass function of Y.

Section B: Hand-written/drawn response Questions

Question 3

In a binary transmission system, the transmitted signalX is either -1 or 1, depending on whether sending a “0” bit or a 1” bit, respectively. The received signal Y is corrupted by an additive noise N with a zero-mean Gaussian distribution with variance σ2  = 1/16, i.e. Y = X + N. Assume that “0” bits are two times as likely as 1” bits.

a) Assume that the receiver decides a “0” was transmitted if the observed value of y satisfies

fY (y|X = −1)P(X = −1) > fY (y|X = 1)P(X = 1) and it decides a “ 1” was transmitted otherwise. Find a threshold T where this decision rule becomes equivalent to deciding “0” if y < T and deciding 1” if y T.

b) What is the overall probability of error?

Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

You may use the following Q-function table:

Question 4

Anytime Fae throws a Frisbee, her dog catches the Frisbee with probabilityp = 0.1, independent of whether the Frisbee is caught on any previous throw. When the dog catches the Frisbee, it runs away with the Frisbee, never to be seen again. Fae continues to throw the Frisbee until the dog catches it.

Let X denote the number of times the Frisbee is thrown.

a) Find an expression for PMF of X?

b) What is the probability that Fae will throw the Frisbee more than three times?

c) Find the expected value of X.

d) Now assume that her dog always returns the Frisbee after catching it, so that Fae can throw it again. Every time her dog returns with the Frisbee, Fae rewards her with a meatball. Find an expression for PMF of the number of Meatballs given to the dog if Fae throws the Frisbee 100 times.

Question 5

Answer both of the following:

(a) Let Z = aX + bY, where a and b are constants, and X and Y are continuous random variables. Show that E(Z) = E(aX + bY) = aE(X) + bE(Y).

(b) Let G = aF + b, where a and b are constants, and F is a continuous random variable. Find the covariance of F and G.

Justify your answers by including all reasoning and/or formulae used to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 6

Consider an experiment of drawing randomly three balls from a bowl containing two red, three white and four blue balls. Let (X,Y) be a pair of random variables, where X and Y denote, respectively, the number of red and white balls chosen.

Answer all of the following parts to the question:

(a) Find the joint probability mass function of (X,Y).

(b) Find the marginal probability mass functions of X and Y.

(c) Are X and Y independent?

Justify your answers by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 7

The diameter of a particular brand of cricket ball is approximately normally distributed, with a mean of 7.12cm and a standard deviation of 0.075cm. If you select a random sample of nine cricket balls:

(a) What is the probability that the sample mean is less than or equal to 7.07cm?

(b) What is the probability that the sample mean is between 7.095cm and 7.145cm?

(c) The probability is 60% that the sample mean will be between what two values symmetrically distributed around the population mean?

Answer all of the above parts to the question. Justify your answers by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图