代写ECE2191 Probability Models in Eng. Example 3代写Web开发

ECE2191

Probability Models in Eng.

Example 3

Information

This is an open-book exam.You are permitted to use lecture notes and calculators to complete the questions.

This exam consists of 7 questions.

You have 2 hours and 10 minutes to complete the exam.

The exam has the following sections:

● Section A: Essay and Composite Questions

o Answer the question in section A by entering text online in the dedicated space below each question. Note that these questions may have multiple parts and all parts should be attempted.

● Section B: Hand-Written/Drawn Response Questions

o Answer all of the hand-written/drawn response question in section B on your own pieces of paper. All questions in section B should be attempted.Please clearly label each blank piece of paper with your Student ID and the question number(and subpart of the question,if applicable). Please do not write your name on the paper.You will have time at the end of your exam to upload photographs of your answer sheets.

If you believe there is an error or a question is unclear,clearly state any assumptions you need to make and  proceed.

Section A-Essay and Composite Questions

Question 1

Assume that two sources A and B are producing noise,where the power of the noise from each source is modelled by a Gaussian random variable; with mean of 230 milliwatts and standard deviation of 5 milliwatts for source A and mean of 225 milliwatts and standard deviation of 10 milliwatt for source B. Assume that the probability of the noise power being negative is negligible.Which source is more likely to produce a noise stronger than 240 milliwatts.

Explain your results in full by including all reasoning,formulae used and/or calculations performed to arrive at your answers.(Note:no marks will be given if no reasoning,formulae used and/or calculations are provided.)

The following information may be used:

Q-function values:

Question 2

The number of new babies born with a congenital disease over time is modelled by a Poisson random variable,with an average of 1460 new cases per year. Assume that no leap year is considered.

Answer the following questions.Explain your results in fullby including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note:no marks will be given if no reasoning, formulae used and/or calculations are provided.)

2a) (a)What is the probability of no babies born with the disease in a day?

2b) (b)What is the probability of no more than 2 babies born with the disease in a day?

Section B-Hand-Written/Drawn Response Questions

Question 3

ECE2191 is offered in both Clayton and Malaysia,with 60 male and 40 female students enrolled in Clayton and 40 male and 10 female students enrolled in Malaysia. A group of 8 students are randomly selected as ECE2191 student representatives.

a) How many ways are there to choose this group?(Calculation of the final answer is not required.)

b) What is the probability that a randomly selected group has exactly 4 female and 4 male students?(Calculation of the final answer is not required.)

c) What is the probability that a randomly selected group has exactly 5 male students from Clayton, 1 female student from Clayton, 1 male student from Malaysia and 1 female student from Malaysia? (Calculation of the final answer is not required.)

Provide answers to all parts (a) to (c). Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks willbe given if no reasoning,formulae used and/or calculations are provided.)

Question 4

The PDF of a continuous random variable Xis modelled as:

a) If the expected value is 0.6,find the constantsa and b.

b) Find an expression for the CDF.

c) Calculate the variance.

d) Find P(X>0.5).

e) Find the variance of the new random variable Y=2X+1.

Explain your results in full by including all reasoning,formulae used and/or calculations performed to arrive at your answers.(Note:no marks will be given if no reasoning,formulae used and/or calculations are provided.)

Question 5

Let (X,Y) be a pair of random variables with joint PMF given by:

Answer the following two questions:

(a) Are X and Y independent?

(b) Are X and Y uncorrelated?

Provide answers to both questions (a) and (b). Justify your answers by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note:no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 6

You're at a large dinner party and the host has hired an up-and-coming chef to create his famous seafood dish for the occasion.Given the intricacy of the dish,each serving of the dish must be individually prepared.The amount of time required to prepare a single serving of the dish is normally distributed with a mean of 45 minutes and a standard deviation of 10 minutes. A random sample of 16 servings is selected.

Answer the following two questions:

(a) What is the probability that the sample mean is between 45 and 52 minutes?

(b) 95%of allsample means will fall between which two values?

Provide answers to both questions (a) and (b). Justify your answers by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)

Question 7

You run a local restaurant that sells noodles.Your restaurant is part of a major franchise consisting of noodles  restaurants all over the world.You are  interested in studying diners'patterns of behaviour. In particular, you want to find an estimate of the average time that diners spend in the franchise's noodles restaurants all over the world. You know  that the population standard deviation (i.e., the  standard deviation of the time that diners spend in the franchise's noodles restaurants all over the world) is 15; and you can safely assume that the times diners spend in the franchise's noodles restaurants all over the world follow a normal distribution.You collect a sample of your own local diners' times spent in your restaurant during an evening of food service. These lengths of time are provided below (in minutes):

32,40,33,57,16,54,29,23,73,40,46,71,48,53,54,10,44,24,73,32

a) Construct a 99% confidence interval estimate for the average time that diners spend in the franchise's noodles restaurants all over the world.

b) Additionally,construct a 90% confidence interval estimate for the time that diners spend in the franchise's noodles restaurants allover the world, and discuss this 90% confidence interval estimate in comparison to the 99%confidence interval estimate that you calculated prior.

Explain your results in full by including all reasoning, formulae used and/or calculations performed to arrive at your answers. (Note: no marks will be given if no reasoning, formulae used and/or calculations are provided.)






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图