代写CORPFIN 7033 Quantitative Methods Semester 2, 2025代做回归

Quantitative Methods (M) & (UAC) Semester 2, 2025

Major Project

Project Instructions

●   The project is separated into 3 interrelated tasks. All 3 tasks are due at the same time and should be prepared as a single report. The final report due date is Friday the 31st of October at 5pm Adelaide time (GMT  +09:30). Please submit your reports online via MyUni by uploading a single file in Microsoft Word format (either .doc or .docx) through the Assignments tab and associated link. If your assignment is late, please email it to George personally ([email protected]) – Do not submit via MyUni if your assignment is late.

●   Tasks 1, 2 and 3 most closely relate to Topics 2, 8 and 9 as detailed in the course outline.

●   This is a group project. You are only permitted to complete it in groups of 2 or 3 students. Individual submissions, and those from groups larger than 3, are not permitted. Importantly, make sure that you self-allocate into a numbered group on MyUni (you will be shown how to do this during classes in Week 9). When submitting your report, only 1 student from each group should upload the report to MyUni, under your unique group, with the names and student IDs ofall group members included on the front page.

●   The project comprises  15% of your final Quantitative Methods (M) grade. The Grading Rubric is also available on MyUni, giving additional detail on the assessment breakdown.

●   Your final report will be processed through Turnitin  (including Turnitin’s AI writing indicator) as a check for plagiarism so please ensure that you only present your own work. In addition, your final report needs to meet all of the following criteria:

Font:                            Times New Roman

Font size:                     12 point

Page margins:              2.54cm all around (Normal)

Page Limit:                   10 pages only (A4, single sided). The page limit should not be exceeded for any reason (i.e., not for appendices, raw data, STATA coding)

Appropriate font, font size, page margins, and page limit are all graded against ‘Report Structure and Written Presentation Quality’ (10%).

●   Further Advice:

In total, your title, table of contents, and a short introduction should take 1 page (max).

Ensure your report is free from spelling and grammatical errors.

Ensure your report is clear and well-structured.

Ensure your report is written in context and answers questions in context.

Make sure it is clear which model is your “Headline Regression Model” (Final answer)

Junction is a small town with two suburbs. The data file “Major Project — Data Set” contains data on 535 houses sold in Junction between 2020 and 2025. This data includes the price at which the house was sold, which of two agents sold the house (all houses are sold through an agent by law), the year in which the house was sold as well as data on various characteristics of each house sold (age, size, number of stories etc.). These characteristics serve as possible explanatory variables of sale price.

Data definitions follow:

OBS =   observation

AGE =   age of house in years

SHOPS =    1 if house is close to a shopping precinct, 0 otherwise

CRIME =   crime rate of the suburb within which the house is located

TOWN =   distance in kilometres to the town centre

STORIES =   number of dwelling stories

OCEAN =   1 if house has an ocean view, 0 otherwise

POOL =   1 if house has a pool, 0 otherwise

PRICE =   price at which the house was sold (in dollars)

AGENT =   selling agent — “W&M” (0) or “A&B” (1)

SIZE =   size of the house in square metres

SUBURB =   Mayfair (0) or Claygate (1)

TENNIS =    1 if house has a tennis court, 0 otherwise

SOLD =   year of last sale (2020 to 2025)

Your tasks

Task 1 - 20% of project grade (recommended length: 2 pages)

You are required to provide a comprehensive summary of the data set contained in the “Major Project — Data Set” file. How you choose to do this is entirely at your discretion. However, it is recommended that you consider using both summary statistic and graphical methods while also noting any peculiarities within the data set.

Task 2 (including Headline Regression Model) - 50% of project grade (recommended length: 4 pages)

You have been hired by Jenny, the wealthy owner of a house on Elm Street in Junction (not included in the data set) to predict the price at which her house will sell. Her house has two stories, is in Claygate, is 164 square metres large, is not near a shopping precinct and is 10 km from the town centre. She estimates that the house is about 11 years old and in a low crime area according to her experiences. Jenny inherited the house from her uncle and is therefore unsure when it was last sold. Some other features of the property can be seen below:

You are expected to build a regression model of house prices. In doing so, make sure that you use an appropriate number of predictors to develop your estimates. Once you have constructed an appropriate model, use it to obtain and provide for Jenny’s house:

1.         A point prediction of the sales price which it can be expected to fetch

2.         A 95% interval prediction for this sale price

3.         An estimate of the marginal effect of house size on this sale price

4.        Financial advice on whether Jenny should use “W&M” or “A&B” to sell her house. “W&M” charges a commission of 2.8% whereas “A&B” charges a commission of 3.5% of the final sale price.

Jenny, who claims to have some knowledge of regression analysis, has stressed that she thinks you should use a regression model with an R2  of at least 88%.

Note: Task 1 directed you to take note of any peculiarities in the data set. There are other additional errors in the data set that you may not have picked up on in Task 1. These will only become clear to you once you start working on Task 2. Several problems can result if you fail to handle these issues correctly, so be mindful to address them, both in your regression application as well as your final report. If resolving any of the errors in the dataset requires you to make assumptions, make sure to clearly state your reasoning and approach in your report.

Task 3 - 20% of project grade (recommended length: 3 pages)

Please provide a reflective discussion on how you executed Task 2 of the project above. Specifically, consider the following:

1.         Verify that your regression model  does not suffer from any misspecification errors and provide the relevant regression diagnostics which support your findings.

2.        If you found that your model is in fact partially misspecified in part (1) of Task 3 above, explain what you did to ensure that the misspecification only has a minimal impact on your results in Task 2 above. That is, explain how you corrected any misspecifications that occurred during your modelling.

3.        Were there any other oddities in the data set or your model? Explain.

4.        Is there anything else worth mentioning which is relevant to your work or to your results for Jenny?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图