代写MLAI4DS Mock Exam Paper代写C/C++编程

COMPSCI5100

MLAI4DS Mock Exam Paper

This examination paper is worth a total of 60 marks

1. Linear regression with models of the form. , is a common technique for learning real-valued functions from data .

(a) Squared and absolute loss are defined as follows:

Describe, with a diagram if you like, why, when optimizing the parameters with the squared loss outliers have a larger effect than with the absolute loss .             [6 marks]

(b) Which of the following statements is true:

A) Parameter estimation with the squared loss is not analytically tractable .

B) The squared loss is equivalent to assuming normally distributed noise .

C) The absolute loss is a popular choice for regularization .

D) The squared loss is a popular choice for regularization .           [2 marks]

(c) Discuss why the value of the squared loss on the training data cannot be used to choose the model complexity.   [3 marks]

(d) For the particular model , I optimize the parameters and end

up with . What does the model predict for a test point at xnew = 3?       [2 marks]

(e) The radial basis function (RBF):

is a popular choice for converting the original features, xn,d , into a new set of K features prior to training. Assume the value of S is given. Describe a procedure for determining the center parameter μd,k and K . [4 marks]

(f) With respect to the functions they can fit, describe the difference between RBF and the basic linear model WT xn with a graph.       [3 marks]

2. Classification question

(a) Use a classification algorithm, describe what is meant by:

(i) Generalisation            [2 marks]

(ii) Over-fitting              [2 marks]

(b) A classification algorithm has been used to make predictions on a test set, resulting in the following confusion matrix:

Compute the following quantities (expressing them as fractions is fine):

(i) Accuracy           [2 mark]

(ii) Sensitivity         [2 mark]

(iii) Specificity        [2 mark]

(c) Explain why it is not possible to compute the AUC from a confusion matrix .        [4 marks]

(d) Two binary classifiers are used to make predictions for the same set of six test points. These predictions are given below, along with the true labels . Compute its area under the curve (AUC) in each case .        [4 marks]

(e) Explain how the SVM can be extended via the kernel trick to perform. non-linear classification .        [2 marks]

3. Unsupervised learning

(a) Provide pseudo code for K-means (assume that the number of clusters is provided) .           [5 marks]

(b) Is the total Euclidean distance between data points and their cluster centers a good criterion to select number of clusters in K-means? Why?              [2 marks]

(c) Gaussian mixture models can be fitted to data using the expectation maximization (EM) algorithm. The EM algorithm has two steps: E-step and M-step. Describe what parameters are being estimated in each step in Gaussian mixture models .  [4 marks]

(e) Describe three key differences between K-means and Gaussian mixture models          [4 marks]

(e) K-means often converges to a local optimal solution. Describe a simple process for overcoming the local optimality of K-means .            [3 marks]

(g) Describe  two situations (with justification) where you might choose a mixture model over K-means .      [2 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图