代写COMPSCI 5011 INFORMATION RETRIEVAL 2021代写Web开发

DEGREES OF MSc, MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

INFORMATION RETRIEVAL M

COMPSCI 5011

Monday 10 May 2021

SECTION A

1.

(a)

The following documents have been processed by an IR system where stemming is not applied:

DocID

Text

Doc1

breakthrough vaccine for covid19

Doc2

new covid19 vaccine is approved

Doc3

new approach for treating patients

Doc4

new hopes for new covid19 patients in the world

(i)        Assume that the following terms are stopwords: in, is, for, the. Construct an inverted file for these documents, showing clearly the dictionary and posting list components. Your inverted file needs to store sufficient information for computing a simple tf*idf term weight, where wij = tfij *log2(N/dfi)          [5]

(ii)       Compute the term weights ofthe two terms “breakthrough” and “vaccine” in Doc1. Show your working.      [2]

(iii)      Assuming the use of a best match ranking algorithm, rank all documents using

their relevance scores for the following query:

covid19 vaccine

Show your working.  Note that log2(0.75)= -0.4150 and log2(1.3333)= 0.4150.      [3]

(iv)      Typically, a log scale is applied to the tf (term frequency) component when

scoring documents using a simple tf*idf term weighting scheme. Explain why this is the case illustrating your answer with a suitable example in IR. Explain through examples how models such as BM25 and PL2 control the  term frequency counts.         [4]

(b)    Consider the recall-precision graph below showing the performances of two variants of a search engine that mimic Google Scholar on a collection of research papers. There is no difference between the two variants apart from how they score documents. Assume that you are a student looking to find all published papers on a given topic. In other words, you do not want to miss any of the relevant documents. Explain which search engine will be more suitable for your task and why?           [5]

(c)    Assume that you have decided to modify the approach you use to rank the documents of your collection. You have developed a new Web ranking approach that makes use of recent  advances  in  neural  networks. Explain  in  detail the  steps  you  need  to undertake to determine whether your new Web ranking approach produces a better retrieval performance than the original ranking approach.      [5]

(d)    Consider a query with two terms, whose posting lists are as follows:

term1 → [id=2, tf=2], [id=5, tf=1], [id=6, tf=1]

term2 → [id=2, tf=4], [id=4, tf=3] , [id=5, tf=4]

Explain and provide the exact steps/order in which the posting lists will be traversed by the TAAT & DAAT query evaluation strategies and the memory requirements of both strategies for obtaining a result set of K documents from a corpus of N documents (K<N).            [6]

2.

(a)     Consider a corpus of documents C written in English, where the frequency distribution of words approximately follows Zipf’s law r * p(wr |C) = 0.1, where r = 1,2, …, n is the rank of a word by decreasing order of frequency. Hence, the words are ordered by decreasing order of probability of occurrence in the corpus such that wr is the word at rank r, and p(wr |C) is the probability of occurrence of word wr in the corpus C.

What proportion of word occurrences would be removed from the collection if we ignored all occurrences of the five most frequent words in the collection? Justify your answer.        [5]

(b)   Consider the query “jackson music” and the following term frequencies for the

three documents D1, D2 and D3, where the  search engine  is using  raw  term frequency (TF) but no IDF:

 

indiana

jackson

life

michael

music

pop

D1

0

4

0

3

0

6

D2

4

0

3

4

0

0

D3

0

3

0

5

4

4

Assume that the system has returned the following ranking: D2, D3, D1. The user judges D3 to be relevant and both D1 and D2 to be non-relevant.

(i)   Show the original query vector, clearly stating the dimensions of the vector.        [2]

(ii)  Use Rocchio’s relevance feedback algorithm (with α=β=γ=1) to provide a revised query vector for “jackson music”. Terms in the revised query that have negative weights can be dropped, i.e. their weights can be changed back to 0. Show all your calculations.          [4]

(c)     Suppose we have a corpus of documents with a dictionary of 8 words w1 , ..., w8.

Consider the table below, which provides the estimated language model p(w|C) using the entire corpus of documents C (second column) as well as the raw word counts in doc1 (third column), where ct(w, doci) is the raw count of word w (i.e. its term frequency) in document doci. The fourth column corresponds to a classical unigram language model for document doc1  estimated using the non-smoothed maximum likelihood estimator.

Word

p(w|C)

ct(w, doc1)

plm(w, doc1)

w1

0.4

2

0.2

w2

0.15

2

 

w3

0.05

1

 

w4

0.1

2

 

w5

0.05

2

 

w6

0.15

0

 

w7

0.05

1

 

w8

0.05

0

 

(i)        Provide the missing values in the table for the non-smoothed maximum likelihood probabilities plm(w|doc1) for each of the 8 words (fourth column) . Show your calculations.         [4]

(ii)       Suppose we now smooth the language model for doc1 using the Dirichlet prior smoothing method with parameter μ = 10. Recall that for a given word w, the smoothed probability using the Dirichlet prior smoothing method is estimated as follows:

 

where  |doc1 | is the document length of doc1  in tokens.

Compute the Dirichlet smoothed probabilities for words w1  and w2  in Doc1.

Show your calculations.         [2]

(iii)      For the remaining 6 words of doc1  (w3, w4, w5, w6, w7, w8), explain whether

the smoothed probability will be larger than, equal to, or smaller than the initial non-smoothed maximum likelihood estimate.   You  do  not  have to compute the actual probabilities, but just use one of {> , = , <} to indicate the expected change. You must justify your answer.         [3]

(iv)      Let q  = w1  w6   be the query issued by the user. Provide the probability of q

according to the Dirichlet smoothed language model for doc1 (recall that μ =

10).  Show your calculations.            [2]

(v)       Assume that we make the value of μ larger (i.e.  >  10).  Explain if the probability of q will become larger,  smaller or if it will remain the same. Justify your answer.         [2]

(vi)      Assume another document doc2  in the corpus, which is identical to doc1 with the exception that one occurrence ofw1 has been changed to word w5. Hence, we have ct(w1, doc2  ) = 1 and ct(w5, doc2) = 3.

Let q1  = w1  w5  be the new query.

If no smoothing is applied, using the query likelihood retrieval method, state which of the two documents (doc1  or doc2) will be ranked higher. Justify you answer.

Using the query likelihood retrieval method but this time with Dirichlet prior smoothing applied (μ = 10), show which of the two documents (doc1 or doc2) would be ranked higher. Show your calculations.

Discuss whether smoothing has an impact on the ranking order of doc1  and doc2 and how? Justify your answer.    [6]

SECTION B

3.      (a)

Consider the following vector space scoring formula:

 

where ct(w,d) and ct(w, q) are the raw counts of word w in document d and query q, respectively (in other words, the term frequency of w in d and q, respectively); Nw  is the number of documents in the corpus that contain word w, and Mis the total number of documents in the corpus. Provide 4 reasons why the retrieval formula above is very unlikely to perform well in a Web search context. Justify your answers.       [5]

(b)

For a particular query q, the multi-grade relevance judgements of all documents are {(d1,1),(d3, 4),(d6, 2),(d9, 3),(d11, 1),(d31, 2)}, where each tuple represents a document ID and a relevance judgment pair, and all the other documents are judged as non-relevant. Documents are judged on the scale 0-4 (0:not relevant - 4:highly relevant). Two IR systems return their retrieval results with respect to this query as follows (these are all results they have returned for this query):

System A: {d1, d2, d3, d4, d5, d6, d7}

System B: {d31, d22, d3, d6, d15}

For both  System A and  System B,  compute  the  following ranking  evaluation metrics. You must clearly articulate how you compute each of these metrics. Since there are two DCG definitions discussed in the class, you should use the original one where 1/log2  (rank)  is used as the discount factor that is applied to the gain:

(i)   Average Precision (AP).   Show your calculations.         [3]

(ii)  Normalised Discounted Cumulative Gain (NDCG) for each rank position. In your answer, provide the ideal DCG values for the perfect ranking for the given query. You might wish to note that log2  2 = 1; log2  3 = 1.59; log2  4 = 2; log2  5 = 2.32; log2  6 = 2.59 and log2  7 = 2.81. Show your calculations.         [6]

(c)     URL length has been shown to be an important feature for some Web search tasks.

Discuss which types of information needs on the Web, the URL length feature is most appropriate for.

Consider a linear learning to rank model for Web search using 4 features: PL2, Proximity, PageRank and URL length. Using such a model, explain the main disadvantage of using linear learning to rank models in Web search.           [5]

(d)    A posting list for a term in an inverted index contains the following three entries:

id=3 tf=4      id=7 tf=3       id=10  tf=5

Applying  the  delta  compression  of  ids,  show  the  binary  form  of the  unary compressed posting list. What is the resulting (mean) compression rate, in bits per integer?            [5]

(e)     A  Web search engine has devised a new  interface to present its search results.

Describe three specific approaches that could be used by the search engine to evaluate the interface change.

Which approach you would recommend and why?             [6]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图