代做PHAS0008 “Practical Skills 1P” Experiment T8代写C/C++程序

PHAS0008 “Practical Skills 1P”

Experiment T8: Specific Latent Heat of Liquid Nitrogen

(4 Sessions)

Experimental Objectives

To determine the specific latent heat of vaporisation of liquid nitrogen. This quantity is also known as the specific enthalpy change on vaporisation.

To determine the specific latent heat of melting of water and/or heavy water ice.

Relevant Lecture Course

•   Thermal Physics and the Properties of Matter (PHAS0006)

Potential Hazard: Latent Heat of Liquid Nitrogen

•    Nitrogen is non-flammable and weighs approximately the same as air. Inhalation of a Nitrogen enriched atmosphere (ie: loss of oxygen) may cause dizziness, drowsiness, nausea, vomiting, excess salivation, diminished mental alertness, loss of

consciousness, and ultimately: death.

•    Freeze burns from spilled liquid nitrogen that leaves the dewar or the equipment, for example when retrieving samples.

Existing Control Measures

•    Prevent unauthorized people having access to areas used for delivering, storing, dispensing and using liquid nitrogen.

•    Avoid direct skin contact with items which recently been in proximity of liquid nitrogen, by using insulated gloves or tongs.

•   Oxygen depletion monitors are situated around the laboratories, and will detect the amount of Liquid Nitrogen build up in the laboratories.

•    Latent Heat of Liquid Nitrogen. Technician or qualified demonstrator for the use of liquid nitrogen, distributes the Liquid Nitrogen.

•    Users are required to wear Safety Glasses at all time when using the nitrogen.

•   Only persons fully trained in the use of cryogenic liquids may use the LN2

•    The container of the Liquid Nitrogen is covered once the nitrogen has been applied.

•    The wiring of the circuit for experiments involving the use of Liquid Nitrogen is  checked by the Technician and Demonstrator before being allowed to continue.

•   Supervision from Technician and Demonstrators regarding Health and Safety.

•   Safety guidelines are adhered to at all times.

•    No Lone working permitted at any time.

Risk Level with existing controls

Low/Tolerable

Safety Note: Use of Liquid Nitrogen

Please read this Safety Services policy:

• https://www.ucl.ac.uk/safety-services/policies/2022/dec/liquid-nitrogen

This experiment uses a small amount of liquid nitrogen. There is no reason for you come into contact with the liquid nitrogen, however if you do there is a possibility that the

extreme low temperature of the liquid may cold burn you. To avoid accidents you should take the following precautions.

•    Use the safety spectacles provided while performing the experiment.

•    Remove rings. If liquid nitrogen falls on your hands it could be trapped behind a ring and this could result in burning.

•   On finishing the experiment, ask the technician to return the unused liquid to the storage vessel.

Should you come into contact with the liquid, please note that small splashes of liquid nitrogen on your skin will not harm you. However, exposure to the liquid for more than 3 or 4 seconds may cause cold burns. If this should happen for any reason, call the lab    technician for help and take steps to get the liquid away from your skin. If possible run  cold water over the affected region.

Please note that on evaporation, one litre of liquid nitrogen will produce around 700 litres of gas.

1. Introduction

The term “latent heat” was first used by Joseph Black in a posthumous work, Lectures on the Elements of Chemistry, published in 1803, but describing experiments done 40 years  earlier [1, 2]. The term was first applied to the heat required to vaporise a liquid, but a similar effect is encountered when going from solid to liquid. The modern definition of the specific latent heat of vaporisation, as given, for example, in Chambers’ Dictionary of Science and Technology [3], is “The heat required to change the state of unit mass of a substance from solid to liquid, or from liquid to gas, without change of temperature.

Most substances have a latent heat of fusion and latent heat of vaporization. The specific latent heat is the difference in enthalpies of the substance in its two states. Unit J kg-1.  In Black’s day, the latent heat was quantified by comparing the time taken to boil a vessel of water dry, with the time taken to bring it to boiling point, assuming a constant rate of heat flow. Nowadays we have more accurate ways of measuring the heat input.

Latent heat is a key quantity in many natural and industrial processes, for example in temperature regulation and engine performance. It also plays a central role in atmospheric, oceanic and climate stability and modelling. [4-6]

2. Background and Theory

Nitrogen and other inert gases, such as helium and propane (C3 H8), can be liquefied by    compression/expansion cycles at around 30 bar and exploitation of the Joule-Thompson effect [see PHAS0006 and 7]. The boiling points of He, H2, N2  and C3 H8 at atmospheric pressure are 4.21, 20.27, 77.35 and 231.1 K respectively.

Liquefied gases used in experiments are kept in dewars (named after their inventor Sir James Dewar, the first person to liquefy hydrogen). These are flasks with a double wall of glass, separated by a vacuum, which are used to thermally insulate materials so as to keep them either hot or cold. Dewars insulate the liquid from nearly all sources of ambient heat in the laboratory, but are not 100% efficient. A quantity of liquid nitrogen in a dewar, assumed to be at 77K (the boiling point of N2) [8], will slowly boil away due  to background heat.

The rate at which the liquid loses mass is proportional to the rate of influx of background heat:

(1)

where L is the specific latent heat of vaporisation and Q  = mL [9]. If we supply additional heat, the rate of mass loss will increase:

(2)

Hence, even if we don’t know the background rate of heat fIow, as Iong as we do know the additional rate we can calculate L from the difference between the two rates of mass loss - in other words, by subtracting equation 1 from equation 2:

(3)

and hence;

(4)

Make sure you understand what is meant by the latent heat of vaporisation and latent heat of fusion of a substance, and how they differ from heat capacity.

3.  The Experiment

In this experiment the additional heat will be supplied by a resistor in which a current is flowing. According to electrical theory, a resistor, across which there is a potential

difference V, and in which a current I is flowing, dissipates power (energy per unit time) according to the formula;

P = VI.                                                                      (5)

So, if all this power is absorbed by the liquid nitrogen as latent heat, equation 4 is then;

(6)

We therefore need to measure V, I, and the rates of mass loss with and without the current flowing.

Q3.1: Why might V and I fluctuate? Can this be controlled?

3.1 Equipment

The experimental set up (see Figure 1) is very simple: a dewar with a loose fitting polystyrene lid through which two wires lead to the resistor is placed on a weighing scale. The mass of the dewar and contents will decrease with time as the liquid nitrogen evaporates.

Q3.2: Why is the polystyrene lid loose?

Q3.3: What methods of heat transfer are relevant?

The diagram in figure 1 is useful, but whenever an electrical circuit is built as part of an experiment a circuit diagram should also be included.

The electrical circuit should supply about 10W of electrical power to the resistor.

Q3.4: What is the value of resistance of the resistor?

Q3.5: What I-V combination(s) will you use? Is there a reason for your choice?

3.2 Safety Note

Ask a member of technical staff to fill the dewar nearly to the brim with liquid nitrogen. It should weigh around 200 ± 20 g.

DO NOT TURN ON THE ELECTRIC POWER SUPPLY UNTIL THE RESISTOR IS IMMERSED IN NITROGEN – the resistor becomes very hot and needs to be in the liquid nitrogen before the power is turned on to prevent it from burning. It should remain in the same position  at all times, completely surrounded by liquid nitrogen (in both “background” and

“power-on” runs) and not in contact with the dewar.

Q3.6: How will you ensure that the resistor stays where you want it to be?

3.3 Experimental Procedure

In this experiment you will evaluate the rate of mass loss of the liquid nitrogen under two sets of circumstances: [1] with the power on (you can use more than one power

setting: is there an advantage in doing this?), and [2] with the power off (the

background rate). During these two data runs, you should control all other factors that might influence the mass loss rate. Think carefully about the following questions:

Q3.7: As the liquid boils off due to background heat alone, is the rate of mass loss likely to be constant?

Q3.8: Is there anything in the design of the equipment that might cause this rate to vary?

Q3.9: If you are not sure, can you find out experimentally?

Q3.10: If you think there will be variation, how can you limit the effect of such variation on the result of your experiment?

It is recommended that your first data run is done under background conditions only, and lasts long enough for you to observe any changes that occur as the liquid boils away.

N.B. Under normal background conditions, the liquid boils away quite slowly; it takes more than an hour for a full dewar to lose half its contents.

Devise an initial plan for your method, write it in your lab book and discuss with a demonstrator before proceeding.

Remember that when taking data you must also estimate the associated uncertainties at the same time - not as an afterthought.

After your initial background run, you should assess your data and decide whether your plan needs modification. The best way to do this is by drawing a graph of mass against   time immediately after finishing the run. What do you deduce from the graph?

Remember that the formula we are using to calculate L, namely (6), was based on combining together equations (1) and (2), which correspond to the “background” and “power-on” runs respectively.

Q3.11: There is an assumption underlying this; what is it?

In order to use (6), therefore, you must ensure that your values for the rate of mass loss under “background” and “power-on” conditions are consistent with this assumption.

When you draw up your experimental plan, you should also consider whether there is an advantage in measuring for more than one power input – please see equation 6.

4. Data Analysis

Plot a graph of the mass of liquid nitrogen versus time; determine dm/dt, together with its uncertainty, with power(s) on and off. When fitting the data to obtain the gradient (and intercept), you should also determine and comment on (reduced) X 2.

Using Equation 6, draw up an estimate for L and compare your answer with that found in the literature. [8]

At the end of your first set of measurements you should have:

•   Graphs of mass versus time;

•    Estimates of dm/dt with power on and off;

•   Values of V and I;

•   An estimate of L with an uncertainty estimate.

Q4.1:   How does your estimate for L compare with the published value in terms of its uncertainty?

If you conduct multiple runs at identical power, you may wish to consider whether it is appropriate to find an average value. Remember that we can only justify taking an average of two or more values if they were obtained under the same conditions. If you suspect that one of your values is more reliable than the others, you may choose this one as your final result as long as you can justify the choice. You cannot justify picking out a result simply because it is the nearest one to the accepted value!

You may wish to consider the average of the data points, include all data points from all  runs on a single graph or simply take the average of your values of L. It will be important to consider your uncertainties and whether the uncertainties affect how much weight should be given to any datum point.

As noted in section 3.3, you should also consider whether repeat runs at different power might help reduce the uncertainty in your measured value of L.

5. Discussion & Conclusions

If the uncertainties are large or your initial estimate for L is inconsistent with the published value, you may wish to consider some of the following:

•    Is your value of VI an accurate estimate of the power dissipated in the resistor?

•   What have you assumed about where this power goes? Is your assumption justified?

•   Are your mass readings accurate estimates of the quantity of liquid in the dewar?

•    Is the procedure you used to convert these mass readings to a rate of loss of mass reliable?

•   What factors govern the background rate of mass loss?

Given what you can and cannot control and measure, you may wish to repeat the experiment with the same procedure or modify the procedure to reduce your uncertainties. Discuss any major modifications with a demonstrator before proceeding since there are limits on what may be possible.

In your conclusions you should discuss whether any modifications you made resulted in an improved result; if you have had any further ideas for modification but do not have either the time or the resources to implement them, describe them in your write-up.

6. Extension Experiment: Specific latent heat of melting for water ice (H2O) and/or heavy water ice (D2O)

After completing the main experiments, you should design and conduct an experiment using your apparatus to measure the specific latent heat of melting of water ice (H2O)   and/or heavy water ice (D2O): would you expect the melting point and specific latent heat to be the same for the two different isotopic compositions?

For this extension experiment, you can use your balance and dewar, and a member of technical staff can provide you with a digital thermometer. On request, Derek Thomas will be able to give you water ice cubes and/or a single heavy water ice cube. You may

also use an IR Thermal Imaging camera which can be borrowed from Derek Thomas. Liquid water can be used as a medium of known heat capacity.

Please note that phase change materials, which release their latent heat on freezing, are currently extremely topical for renewable energy storage. [10, 11]

You will, of course, need to draw up a Risk Assessment for your experimental procedure: this MUST be approved by a member of staff before you conduct any measurements, and should include a description of how you will dispose of any samples once they have been used. The Material Safety Data Sheet (MSDS) for D2O is available on Moodle, and please see: https://www.ucl.ac.uk/safety-services/working-safely-chemicals

Safety Note: You must NOT place the resistor heater in water.

7. References

Notes:

Please only quote these references if you have actually read and referred to them, and include relevant page numbers.

The Digital Object Identifier (DOI), is a string of numbers, letters and symbols used to permanently identify an article or document and link to it on the web.

The International Standard Book Number (ISBN) is a numeric commercial book identifier that is intended to be unique.

[1] “Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases”, JB West, Am. J. Physiol. Lung Cell Mol. Physiol., 306: L1057–L1063

(2014). DOI: 10.1152/ajplung.00020.2014

[2] “April 23, 1762:  Joseph Black and Latent Heat. Disappearing heat and the dog that did not bark”, R Williams, APS News 21 (2012).

https://www.aps.org/publications/apsnews/201204/physicshistory.cfm(Accessed 12/12/2022)

[3] “Chambers Dictionary of Science and Technology” 2nd editon. JM Lackie General  Editor. Edinburgh: Chambers (2007). ISBN : 9780550104571 (e-book). UCL username and password required for access.

[4] “Latent heat must be visible in climate communications”, T Matthews et al,  WIREs Climate Change, 13, e779 (2022).https://doi.org/10.1002/wcc.779

[5] “Factors of boreal summer latent heat flux variations over the tropical western North Pacific” . Y Wang and R Wu. Clim Dyn 57, 2753–2765 (2021).

https://doi.org/10.1007/s00382-021-05835-4

[6] “Sensible heat has significantly affected the global hydrological cycle over the historical period” . G Myhre, et al. Nat Commun 9, 1922 (2018).

https://doi.org/10.1038/s41467-018-04307-4

[7] “Liquefaction of gases”. WH Isalski, Thermopedia (2011). DOI:

10.1615/AtoZ.l.liquefaction  of  gases

[8] “Tables of Physical and Chemical Constants” 16th edition, originally compiled by G.W.C. Kaye and T.H. Laby; Longman, New York (1995). ISBN-13: 9780582226296.    Available at Kaye and Laby online:http://www.kayelaby.npl.co.uk/toc/

[9] “Physics for Scientists and Engineers” 9th edition, RA Serway and JW Jewett.

Australia: Brooks/Cole Cengage Learning (2014).  ISBN : 9781473711143 (e-book). UCL username and password required for access.

[10] “Phase change materials for thermal energy storage” . K Pielichowska & K Pielichowski, Progress in Materials Science 65, 67-123 (2014).

https://doi.org/10.1016/j.pmatsci.2014.03.005

[11] “Trimodal thermal energy storage material for renewable energy applications” . S Saher, S Johnston, R Esther-Kelvin, et al.  Nature 636, 622–626 (2024).

https://doi.org/10.1038/s41586-024-08214-1


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图